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Abstract
We formulate a short-term (minutes) stochastic model of the factors affecting food intake. The model incorporates the interplay ofglycemia, insulinemia and appetite to determine the size of meals and the probability of snacking. Simulations show the plausibility ofthe described food intake dynamics over the course of several years. Using the model, we showcase two main situations: maintenanceof a constant (lean) body habit, given healthy food choices; and rapid increase in body weight if sugary snacks and drinks are preferred,even when all other model parameters are kept unchanged (appetite, meal caloric offering etc.). The model is able to linkminute-by-minute behavior with long-term changes in body weight and metabolic compensation, including increasing insulinresistance and increased variability of glycemia. Model simulations support quantitalively the hypothesis of a possible mechanisticpathway from alimentary lifestyle to Impaired Fasting Glucose and Impaired Glucose Tolerance and eventually to overt Type 2 DiabetesMellitus.
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1. Introduction

1.1. Overweight and obesity

It is by now well established that overweight and obesityrepresent a world-wide health crisis. Characterized byexcess body fat, these conditions have significant medi-cal, social, and economic consequences. Body Mass Index(BMI) is used by the World Health Organization (WHO)to classify adults as overweight (BMI exceeding 25 kg/m2)or frankly obese (BMI exceeding 30 kg/m2). In 2022, over2.5 billion adults were overweight, with over 890 millionfalling into the obese category. Even more alarmingly,global obesity rates have nearly quadrupled since 1990.

Obesity significantly increases the risk of developinga range of serious diseases. It is a major contributor tonon-communicable diseases like heart disease, stroke (Guet al., 2019; Cheng, 2020), and diabetes, which were theleading causes of death in 2019 (Mc Namara et al., 2019).The idea that what we eat affects Body Mass Index (BMI)seems so obvious as to need little scientific support. Whatis less obvious is that while well-identified eating disor-ders significantly impact weight, so too can cultural habits,social norms and downright food preference.Elucidating the actual, quantitative relationship be-tween alimentary behavior and weight increase would helpunderstand the failure of dieting regimens and inform so-cial awareness campaigns. In fact, a mathematical model
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linking eating behavior and long-term weight changes isnot yet available.
1.2. Models for body weight changes

A host of models have addressed body weight changes.In 2002 Christiansen and Garby (2002) used the lawof energy conservation, data on energy expenditure offat and lean tissues, and data on the composition ofadded/removed tissue during weight change to derive amathematical model describing the development of bodyweight over time, with energy intake and energy expendi-ture as control variables.Chow and Hall (2008) proposed a mathematical modelof macronutrient flux balances, which could capture thelong-term dynamics of human weight change. They di-vided the dynamic behavior of body composition for aclamped diet into two classes. In the first class, body com-position and mass are determined uniquely; in the sec-ond class, body composition can only exist at an infinitenumber of possible states. Interestingly, perturbationsof dietary energy intake or energy expenditure can yieldidentical responses in both model classes. Existing dataare not sufficient to distinguish between these two possi-bilities. Ogwumu et al. (2015) estimated the body weight ofhuman beings in relation to some of their anthropometricparameters (height and waist sizes) and showed that therewas no specific body weight that could be identified as amaximum or minimum.
1.3. Models for energy expenditure

Another class of models, which are relevant to the presentstudy, concerns attempts at quantifying the energy expen-diture of a given individual, in particular as it relates tochanges in body weight.Kozusko (2001) developed a setpoint mathematicalmodel for calculating daily energy requirements incor-porating the metabolic response to weight loss. The modelwas designed to predict energy expenditure during weightloss as a function of the setpoint fat-free mass ratio andsetpoint energy expenditure, disregarding characteristicssuch as age, gender and heredity.Li et al. (2020) proposed a metabolic regulation modelof the body during weight loss: they used time-varyingdifferential equations to simulate how the body regulatesmetabolism during weight loss from dieting, exercise, ormedication, focusing on changes in three major nutrientsand ketone bodies. By analyzing the model qualitatively(through the theory of time-varying differential equa-tions) they provided sufficient conditions for safe weightloss during dieting, exercise, and drug treatment.
1.4. Models for food intake

There is a common saying, “We are what we eat”. Foodintake is the first step toward body weight modelling, sinceit plays a major role in weight management.

Extensive research exists on the mathematical mod-eling of digestion, absorption, and metabolism (gastricemptying being a prime example). On the contrary, theact of eating itself has received much less attention. Bostonet al. (2008) modeled the eating rate during a meal as a nor-mal distribution. They then used this model to investigatedifferences in eating patterns between healthy individu-als and those with night eating syndrome. Cameron et al.(2009) focused on developing a system to detect meals andestimate portion sizes. This would eliminate the need forpatients to input data for calculating insulin dosages. Inter-estingly, their model employs a Bayesian approach assum-ing a uniform prior probability for each meal. Chudtongand De Gaetano (2021) proposed a first complete math-ematical meal model, incorporating stomach distension,glycemic variations, ghrelin dynamics, cultural habits andinfluences on the initiation and continuation of meals, re-flecting a combination of hedonic and appetite compo-nents. Such a detailed model could be used as entry point infull-scale simulations of food absorption and metabolism,both in health and disease.
1.5. Models for glucose-induced satiety

Feeding behavior is clearly linked to glucose concentrationin blood. Hyperglycemia (high blood-glucose concentra-tion) from eating high-sugar diets is effective in reducingfood intake, even if it is not clear how much of this effectis mediated by the inhibition of ghrelin production dueto rising glycemia (Vartiainen, 2009). There is evidencelinking the satiety induced by hyperglycemia with its ef-fect in increasing insulin serum concentrations: risinginsulinemia in fact inhibits dopamine signaling and inter-rupts feeding (Palmiter, 2007; Figlewicz et al., 2003, 1994).For the present work we may take glycemia as a singlerepresentative signal determining appetite. The inges-tion of carbohydrates,in terms of their glucose equivalent(McMillin, 1990), and the absorption of glucose into thecirculation should thus be considered as determinants of(the decrease of) appetite through the increase in glycemiathey produce.
1.6. Models for glycemic control

Since a key determinant of feeding behavior is glycemia, itis useful to study glucose homeostasis. Many mathemati-cal models have been developed in this area, consideringdifferent aspects of this complicated physiological controlmechanism.Close control of glycemia is important for prevent-ing morbidity and mortality (Russell et al., 2014). Datedshort-term glucose-insulin models, even if they havebeen proven to exhibit implausible qualitative properties(De Gaetano and Arino, 2000) are still used in the medicalcommunity, together with extensions including gastroin-testinal absorption (Dalla Man et al., 2007).
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1.7. Aim of the present work

It can be appreciated that, to the best of our knowledge ofthe existing literature, no model has yet been proposed tolink body weight dynamics with alimentary choices de-termining food intake. The aim of the present work istherefore to develop a first such model and show how thismodel is consistent with the clinical, empirical observa-tion that mere choice of food types, ceteris paribus, maydetermine substantial changes in body weight over thespan of few years.
2. Materials andmethods

2.1. Themathematical model

In the following the most relevant model variables arepresented and discussed in turn.

λCG Probability rate of assuming a snack given the cur-
rent glycemia ( /min )
λCG indicates the probability rate or propensity of assum-ing a food snack, given the current glycemic level. It is as-sumed to follow a decaying sigmoid attaining a maximumat zero glycemia and falling off to zero with increasingglycemias:

λCG(G) = 1 – GγCG
GγCGC50 + GγCG (1)

PCG Probability of assuming a snack during the next
time interval ( # )
PC indicates the actual probability of assuming a food snackover the next discretization time interval, and dependsboth on the above-defined propensity and on the lengthof the interval:

PC(G,∆t) = 1 – e–λCG(G)∆t (2)

S Stomach food content ( kcal )
S is the energy in kcal obtained from food in stomach, orthe stomach food content expressed in kcal:

dS
dt = – kOS S(t)

+ A(t) ND∑
D=1

3∑
m=1
Mm,Dδ(t– tm,D)

+ A(t)(Cmin + U(Cmax – Cmin))χG,
S(0) = S0

(3)

where
m ∈ {1, 2, 3} indicates the standard meal (1 breakfast,2 lunch, 3 dinner),
D ∈ {1, . . . ,ND} indicates the day
Mm,D = Mminm + U(Mmaxm –Mminm ),U ∼ U[0, 1], indicatesthe random size of the meal, uniformly distributedbetween limits pertaining to the corresponding standardmeal,
Cmin and Cmax are the standard minimumand maximum snack sizes, U ∼ U[0, 1], so that(Cmin + U(Cmax – Cmin)) is a uniformly distributedrandom snack size between Cmin and Cmax kcal,
χG =

{1 if U < PC(G(t),∆t)
0 otherwise , with U ∼ U[0, 1],

indicates the actual consumption of a snack at time t de-pending on its probability as a function of glycemia and ofthe time discretization interval.Within the framework of a relatively complex repre-sentation of the factors influencing food intake, the sub-model concerned with gastrointestinal absorption of nu-trients has been kept relatively simple.
Z Relative insulin sensitivity ( # )
Z(W) is the level of insulin sensitivity, relative to base-line value, as determined by the current body weight. Itis in fact assumed (as clinically observed) that increasedbody weight is associated with progressively more severedegrees of insulin resistance:

Z(W) = 1 – WγGIW

WγGIW
GI50 +WγGIW

(4)
G Glycemia ( mM )
G is the current glycemia:

dG
dt = –ZkOGIIG + kG + ρGS

VG
kOSS , G(t0) = G0 (5)

where ρGS is the conversion factor between absorbedglucose-equivalent food kcal andmmolof glucose absorbedinto the bloodstream.
I Insulin plasma concentration ( pM )
I is the current insulinemia. Insulin secretion by thepancreas is here assumed to depend on glycemia nonlin-early (higher glycemic peaks determining proportionallygreater insulin secretion):

dI
dt = –kOII + kIGG2 , I(t0) = I0 (6)
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W Body weight ( kg )
W is the current body weight. Its variation is determined bythe balance between (a fraction of) what is absorbed fromthe stomach and current energy expenditure (convertedfrom kcal/day to kcal/min):

dW
dt = ρWS

(
kOSS– Y1440

) , W(t0) = W0 (7)

Y Energy expenditure ( kcal/day )
Y(W) is the daily energy expenditure, as determined by thecurrent body weight. It is in fact assumed that an increasein body weight determines, by itself, an increase in dailyenergy expenditure (related to the heavier mass to move,to possibly increased metabolism etc.):

Y(W) = Ymax WγYW

WγYW
Y50 +WγYW

A Appetite ( # )
A is the appetite level, which, for the purpose of the presentmodel, is assumed to depend on glycemia:

A(G) = Amaxe–λAGG (8)

A schematic diagram of the relationships among thestate variables is shown in Figure 1.

Figure 1. Block diagram of theWeightGainmodel. Labeled circles corre-spond to the state variables as defined in the text. Black arrows representtransfer of substance. Blue arrows represent stimulation or excitation,while red (block) arrows represent inhibion or repression.

3. Results

In the following the model has been used to investigatequantitatively the effect of merely changing food prefer-ences on the long term development of obesity.
3.1. Scenario 1

The baseline scenario portrays an individual of 70kgweight, with a normal baseline appetite, following anormal (healthy) diet, defined as a diet consisting of suchvaried and fiber-rich foods as to determine a stomachemptying half-life of 60 minutes. All other parametersof the simulation have been calibrated so as to reflectcommon medical consensus and to determine a stableweight over the course of four years. In this simulation,offered meal sizes and meal times are uniformly, randomlydistributed within usual limits (say between 6 AM and9 AM for an offered breakfast containing between 450and 650 kcal), and snacking is not assumed to happenbetween 2 AM and 1 hour after breakfast.
Figure 2 shows the time course of stomach contents,glycemia, appetite and daily total food intake over thecourse of four years of simulation. Notably, glycemia peaks(post-prandially) at around 12 mM, total daily food intakeaverages around 2600 kcal, of which around 400 derivefrom snacking.

Figure 2. Maintenance of normal body weight: stomach contents (topleft), glycemia (top right), appetite (bottom left) and daily food intake(bottom right: daily kcal from snacking in red, from regular meals in blueand total in black).

Figure 3 shows the time course of body weight, dailyenergy expenditure, fasting glycemia and relative insulinsensitivity, none of which change appreciably over fouryears. In particular, weight is maintained around 70kgthroughout, and fasting glycemia (the average glycemia
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in the early hours of the morning, before breakfast) isstable at values around 3.7mM (66mg/dl).

Figure 3. Maintenance of normal body weight: body weight (top left),daily energy expenditure (top right), fasting glycemia (bottom left) andrelative insulin sensitivity (bottom right).

Figure 4 shows the time course of stomach content,glycemia, insulinemia and appetite over the course offour days: in this stable situation, at normal body weight,glycemic excursions, the corresponding insulinemic peaksand appetite oscillations are limited.

Figure 4. Maintenance of normal bodyweight: stomach content (top left),glycemia (top right), insulinemia (bottom left) and appetite levels (bottomright) over the course of four days.

3.2. Scenario 2

The second scenario refers to a subject starting out exactlyas before, at 70kg body weight, with all of the same param-eter values as in Scenario 1, except that the food preferenceis shifted towards foods richer in carbohydrates, in par-ticular richer in sugars (e.g. from soft drinks, dessertsand sugary snacks) and poorer in fibers, fats and protein,so that the stomach-emptying half-life is reduced from60 to 20 minutes. Notice that the offered caloric contentof meals and snacks is exactly the same as before (but ifeating with increased appetite the subject will partake of alarger fraction of the offered meal, possibly greater than 1).In other words, nothing changes except digestion half-life.
Figure 5 shows once again the time course of stomachcontents, glycemia, appetite and daily total food intakeover the course of four years. Notice that stomach con-tent peaks are only marginally larger than before. Con-versely, glycemia peaks reach the 20mMmark, a substan-tial increase with respect to Scenario 1, due to the morerapid availability of ingested sugars in the circulation. Ap-petite peaks are increased, due to the fact that reboundhypoglycemias occur after the rapid elimination of peak-ing glucose loads (with persistent insulin concentrations).This is reflected in the much greater contribution of snack-ing to the total daily food intake: initially approximately1700kcal/day out of a total of 3700kcal/day, eventually (atthe end of the four years) 1000kcal/day out of a total of2900kcal/day.

Figure 5. Consequences unhealthy diet choices: stomach contents (topleft), glycemia (top right), appetite (bottom left) and daily food intake(bottom right: daily kcal from snacking in red, from regular meals in blueand total in black).

Figure 6 shows the time course of body weight, dailyenergy expenditure, fasting glycemia and relative insulinsensitivity. Weight increases from 70 to about 90kg, but it
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should be noted that the greater proportion of this increaseoccurs within a couple of years, weight then stabilizingaround its higher level. This is due to both an increase (andeventual stabilization) of energy expenditure as well as to adecrease of insulin sensitivity, leading to higher glycemiasand thus to a decreased average appetite. Notice howeverthat glycemias are more variable: not only post-prandialglycemic peaks are higher (Figure 5 top right panel), butfasting glycemias range from 3mM to 4.2mM. In otherwords in this situation the subject is potentially exposedto both hyper- and hypo-glycemias. While quantitativelythe clinical situation depicted in this scenario does notyet reach the severity of overt diabetes, the configurationof the abnormalities is very clear and coincides with theprogressive development of Type 2 Diabetes Mellitus.

Figure 6. Consequences unhealthy diet choices: body weight (top left),daily energy expenditure (top right), fasting glycemia (bottom left) andrelative insulin sensitivity (bottom right).

Figure 7 shows the time course of stomach content,glycemia, insulinemia and appetite over the course of fourdays at the stable regimen attained after four years of un-healthy eating habits: glycemic excursions are larger dueto the increased proportion of (simple) carbohydrates inthe diet, leading to higher insulinemic peaks, hence to re-bound hypo-glycemias and more sustained appetite over-all, with the consequence of more frequent, larger snacksand increased calorie intake.
4. Discussion

While it is common knowledge that overeating causesobesity, the causes of overeating itself are less well under-stood. One aspect that is examined in the present workrelates to how dietary choices influence the developmentof obesity. The main effect which emerges from thenumerical implementation of the current model confirms

Figure 7. Consequences unhealthy diet choices: stomach content (topleft), glycemia (top right), insulinemia (bottom left) and appetite levels(bottom right) over the course of four days.

the everyday observation that refined carbohydratescause rapid spikes in glycemia, followed by reboundhypoglycemia (“crashes”), causing in turn craving formore (sugary) food thus repeating the cycle, eventuallydetermining substantial increases in calorie intake.
There are as yet no models, to the best of our knowl-edge, that link minute-by-minute metabolism and foodintake mechanisms with their long-term consequences:this work presents a first attempt to build such a model.It should be remarked that the significance of the conclu-sions that can be drawn from simulating this model goesbeyond establishing quantitatively that a preference forsugary foods determines a very substantial weight increaseover the span of a few years. We can in fact observe howthe representation of the interplay of insulin, glucose andappetite in this situation gives rise to the hallmarks of pre-diabetes: variable glycemias with the possibility of danger-ous hypo-glycemic episodes, spiking post-prandial hyper-glycemias (Impaired Glucose Tolerance, IGT), increasedfasting glycemias (Impaired Fasting Glucose, IFG), devel-opment of insulin resistance.As such, the present model represents a first step towardsthe quantitative understanding of the development of Type2 Diabetes Mellitus on the basis of unhealthy lifestyles,clearly more dangerous when accompanied by genetic pre-disposition.

5. Conclusions

It is clearly not necessary to use mathematical modeling tosupport the concept that overeating causes obesity. How-ever, mathematical modeling can offer useful quantitativeinsights as to how and why this happens.
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