
© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

1 

13th International Workshop on Innovative Simulation for Healthcare, 007 
21st International Multidisciplinary Modeling & Simulation Multiconference 

2724-0371 © 2024 The Authors. 
doi: 10.46354/i3m.2024.iwish.007

Simulating Brain Gradient-Echo Magnetic Resonance 
Images through Microstructural Modeling 

Mert Şişman1,2, Alexandra Roberts1,2, Hangwei Zhuang2,3, Renjiu Hu2,4, Junghun

Cho5, Shun Zhang6, Pascal Spincemaille2, Thanh Nguyen2 and Yi Wang2,3,*

1Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA 
2Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA 
3Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA 
4Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA 
5Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14228, USA 

6Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China 

*Corresponding author. Email address: yiwang@med.cornell.edu

Abstract 
Quantitative magnetic resonance imaging (qMRI) methods usually suffer from the lack of appropriate or easy-to-implement 
methods of validation. Here, we developed a detailed framework to synthetically generate realistic brain multi gradient-echo 
(mGRE) data incorporating biophysical modeling of the MRI signals and microstructure brain tissues. In addition to validation, 
simulated data can also be utilized for the supervised training of deep learning models for the inverse mapping of the 
microstructural and physiological distributions. The feasibility of one such parameter that is extremely valuable if can be 
measured noninvasively, oxygen extraction fraction (OEF), is shown. The simulated and in vivo tests demonstrated high 
accuracy in the mapping. The developed method and the results reflect the significance of simulation-based computational 
approaches for answering the clinical needs. 

Keywords: quantitative MRI (qMRI); quantitative susceptibility mapping (QSM); gradient-echo (GRE); oxygen extraction 
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1. Introduction

Magnetic Resonance Imaging (MRI) is an extremely 
powerful tool for clinical diagnostics. Although it is 
one of the most employed discriminators for 
malignant diseases, most of its effectiveness was 
limited to qualitative imaging. Recently, quantitative 
MRI (qMRI) emerged as a strong candidate for the 
detection and monitoring of tissue changes (Keenan et 
al., 2019).  

qMRI encapsulates a large collection of MRI 
methodologies including but not limited to diffusion-
weighted imaging (Jones & Leemans, 2011; Le Bihan et 
al., 1992), T1/T2 mapping either using special pulse 
sequences (Ben-Eliezer et al., 2015; Stikov et al., 2015) 
or MRI fingerprinting (Ma et al., 2013), quantitative 
susceptibility mapping (QSM) (Wang & Liu, 2015), and 
myelin water fraction (MWF) imaging (MacKay et al., 
1994). Although these qMRI tools carry significant 
potential, their success is limited by feasibility, 
repeatability, and most importantly accuracy. 
Therefore, there is a need for validation of the 
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developed methods. For instance, some studies utilize 
histology for the validation of QSM (Gillen et al., 2018) 
and MWF imaging (Laule et al., 2008). However, it is 
not possible to apply histological validation for certain 
MRI measurements such as T1/T2 mapping. 
Therefore, a validation tool that is comprehensive to 
all MRI measurements in addition to being compatible 
with the biophysical mechanisms governing the MRI 
signal generation can be extremely beneficial.  With 
the development of highly efficient and strong 
computational tools, in silico validation becomes a 
strong candidate. 

However, simulation MRI data carries a high 
potential with the increased knowledge of the tissue 
microstructure and publicly available datasets. It is 
possible to generate realistic MRI datasets mimicking 
the physical signal generation processes with known 
signal source distributions. Furthermore, simulated 
MRI data is not only beneficial for validation purposes 
but it also brings up the possibility of utilizing 
supervised deep learning methods since the labeled 
data can be automatically generated.  

In this study, we developed a framework for the 
simulation of multi gradient-echo (mGRE) MRI 
images based on detailed biophysical modeling. 
Microstructural information such as blood 
oxygenation-related signal decay and fiber 
orientation dependent signal variations were included 

in the model for realistic data generation. In addition, 
non-idealities such as off-resonance effects present 
in the real MRI measurements were also incorporated 
into the simulation. Additionally, the feasibility of 
training a neural network using the generated data for 
inverse mapping of oxygen extraction fraction (OEF) 
was examined.  

The remaining sections are organized as following: 
State-of-the-art section summarizes the previous 
methods utilized for realistic MRI data generation and 
OEF estimation from MRI data. Material and Methods 
section describes the details of the mGRE magnitude 
and phase simulation, and OEF estimation through 
supervised training. Results and Discussion section 
presents the example simulation data, comparison to 
real MRI data, and the accuracy of the estimated OEF 
maps. Finally, conclusion section provides the 
concluding remarks. 

2. State-of-the-art 

Physics based simulation of realistic MRI data has 
been employed previously for example for the 
evaluation of the image processing algorithms (Kwan 
et al., 1999). Moreover, the SIMRI was designed as an 
interactive tool for the synthesis of simulated MRI 
data based on Bloch equations (Benoit-Cattin et al., 
2005). Similar to our approach, supervised training 

Figure 1. An example of the brain segmentation steps. T1-weighted (T1w) anatomy-defining image and WM/GM/CSF, deep gray nuclei, 
air/tissue/skull segmentations and the vein partial volume map in the same space obtained through explained steps. 
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with synthetic MRI data was proposed for image 
segmentation (Xanthis et al., 2021) and registration 
tasks (Hoffmann et al., 2022). The accuracy of the deep 
learning based segmentation methods was previously 
evaluated (Jany & G.A., 2021).  

For MRI based OEF estimation several methods 
were proposed such as quantitative blood 
oxygenation-dependent (qBOLD)-OEF (He & 
Yablonskiy, 2007) and phase-based techniques such 
as QSM-OEF (Zhang et al., 2017), and combined 
estimation method called qBOLD-QSM (QQ)-OEF (Cho 
et al., 2018).  

3. Materials and Methods 

mGRE data can be considered one of the simplest MRI 
acquisition schemes, yet it includes the effects of a 
vast group of signal sources. Fundamentally, mGRE 
can be described as a signal distribution generated by 
water protons and modified by various susceptibility 
sources. Susceptibility effects have long been 
considered as an artifact source that needs to be 
corrected for or avoided until qualitative 
susceptibility-weighted imaging (SWI) (Haacke et al., 
2004) and QSM have been shown to provide crucial 
clinical information. 

To simulate mGRE data, magnitude, and phase need 
to be modeled separately as they present correlated 
but distinct effects. T1/T2/PD - weighted images from 
the IXI dataset (http://brain-development.org/ixi-
dataset/) were utilized as the baseline for the brain 
anatomy and tissue segmentations required for the 
following steps.  

3.1. Modeling Phase Signal 

The phase of mGRE data mainly reflects the 
distribution of the susceptibility sources. Therefore, a 
realistic QSM map for each simulated brain is 
generated following the described steps in the QSM 
reconstruction challenge 2.0 (Marques et al., 2021). 
Certain modifications were adapted due to the 
anatomical images available in the IXI dataset 
differing from what was utilized in the challenge data. 
The segmentation of different tissues and structures 
was realized as follows: 

• White matter (WM), gray matter (GM), and 
cerebrospinal fluid (CSF) segmentations are 
obtained using the FSL FAST algorithm (Zhang et 
al., 2001) and T1/T2/PD - weighted images. 

• Deep gray nuclei structures are automatically 
segmented by non-rigid registration of the Allen 
brain atlas (Ding et al., 2016) via ANTs SyN 
algorithm (Avants et al., 2009) to the anatomical 
images. 

• Air/tissue/skull regions are automatically 
segmented by non-rigid registration of tissue 
probability maps of the Statistical Parametric 

Mapping (SPM) toolbox (Ashburner, 2009) to the 
anatomical images. 

• The vein partial volume map is obtained through 
non-rigid registration of the vein atlas provided in 
(Ward et al., 2018). 

An example of the T1-weighted (T1w) structural 
image and corresponding segmentation maps and vein 
partial volume distribution is shown in Figure 1. Once 
the segmentation maps are available, a QSM 
distribution can be created by assigning distinct 
susceptibility values to each tissue type. The partial 
volume between different tissues and intra-tissue 
modulations were also incorporated following 
(Marques et al., 2021). For intra-tissue modulations, 
R1 and R2 maps are simulated by scaling the ratios of 
T1/PD – weighted and T2/PD – weighted images, 
respectively. The modulation factors were recalibrated 
as the original values were provided for R1 and R2* 
maps. 

An important detail is that the susceptibility of 
venous blood depends on the oxygen saturation and 
volume of the venous blood present in each voxel. 
Venous blood saturation rate can be estimated from an 
available OEF map and cerebral blood volume (CBV) 
can be derived from a cerebral blood flow (CBF) map 
(Zhang et al., 2017). Two in-house datasets were 
created to randomly generate realistic brain OEF and 
CBV distributions. For OEF, 15 OEF maps estimated 
from 15O - Positron Emission Tomography and 
published in (Cho, Lee, et al., 2021), were non-rigidly 
registered to Montreal Neurological Institute (MNI) 

Figure 2. Example CBV, OEF, FA and θ maps in the same space with 
the images presented in Figure 1. 

http://brain-development.org/ixi-dataset/
http://brain-development.org/ixi-dataset/
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Figure 4. U-net architecture utilized for OEF and CBV estimations. 

 

space. A similar operation was applied to 8 CBV maps 
derived from the arterial spin labeling (ASL) based CBF 
maps acquired locally (Buxton, 2005). We utilized a 
pseudo-continuous arterial spin labeling (PCASL) 3D 
fast spin echo (FSE) sequence to capture brain data 
from healthy volunteers (N = 8; four males and four 
females) using a GE MR750 3T scanner (GE, 
Milwaukee, WI) equipped with a 32-channel head coil. 
The imaging parameters were as follows: image voxel 
dimensions of 128x128x36, image volume size of 
1.875x1.875x4 mm3, echo time of 10.5 ms, single signal 
average (NEX=1), and a labeling duration of 1450 ms. A 
post-labeling delay (PLD = 1525 ms) was employed to 
generate CBF maps. For each simulated brain, these 
maps were linearly mixed with randomly chosen 
coefficients and warped into the same space where the 
previously created tissue maps reside to generate 
randomized distributions. Once OEF and CBV maps 
were available in the simulation space, venous 
susceptibilities were estimated following the 
equations in (Cho, Spincemaille, et al., 2021).  

The field perturbation distribution due to all the 
simulated susceptibility effects was obtained through 
discretized dipole convolution (Kee et al., 2017). The 
final important inclusion in the phase modeling of the 
mGRE data is the addition of fiber orientation-
dependent local field perturbations that do not follow 
the dipole convolution (Wharton & Bowtell, 2015). The 
fractional anisotropy (FA) and fiber orientation (θ) 
maps were estimated from the International 
Consortium of Brain Mapping (ICBM) DTI-81 
normative atlas (Mori et al., 2008) warped into the 
simulation space. Example CBV, OEF, FA, and θ maps 
are presented in Figure 2. 

3.2. Modeling Magnitude Signal 

Compared to the phase, magnitude is more sensitive 

to the local field variations and the dephasing of 
proton spins should be carefully modeled to accurately 
reflect magnitude signal decay characteristics. Four 
main mechanisms that affect mGRE magnitude signal 
decay are modeled: 

Figure 3. Example simulated volume distribution of small veins 
inside a voxel with corresponding field perturbation for a given 
blood oxygenation level (top row). The process to estimate 
magnitude decay from the intravoxel dephasing. For each voxel, 
27 coefficients (aijk) for a quadratic fit to the local field is 
estimated from the 33 and these coefficients utilized to 
interpolate the field inside the voxel into 2563 grid (bottom row). 
The magnitude signal decay for each voxel is estimated using the 
complex summation using the superposed field f(r) created by 
both capillaries and off-resonance. γ is the gyromagnetic ratio of 
Hydrogen proton, B0 is the static magnetic field strength of the 
MR scanner, and t is the independent variable for time. 
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• Exponential decay with rate R2* which is the sum 
of R2 which reflects the dephasing of spin 
magnetizations due to nanoscopic random motion 
of water protons and R2′ which accounts for the 
microscopic dephasing due to susceptibility 
effects. R2′ is estimated from the simulated QSM 
map using the relation R2′ = D × |QSM| where D = 
137 Hz/ppm (Shin et al., 2021). 

• Fiber orientation-dependent signal decay due to 
the field perturbation created by the myelin 
sheaths. A myelin volume fraction (MVF) map is 
created by scaling  T1/T2 – weighted images as it 
is shown that this ratio correlates with myelin 
content in the brain (Nakamura et al., 2017). 
Magnitude signal change is simulated following 
equations derived in (Wharton & Bowtell, 2013).  

• Dephasing effects due to the field generated by 
deoxygenated blood inside the capillaries and 
small veins. It is simulated numerically by 
creating a volume composed of randomly oriented 
and located cylinders whose susceptibility 
depends on the blood oxygenation level. For 
different oxygenation levels and cylinder volume 
fractions, the field perturbations were computed 
using dipole convolution, and the magnitude 
decay was estimated by summing the complex 
MRI signal on a 2563 grid. Computed curves were 
stored in a dictionary with the corresponding 
labels (OEF and CBV) for fast computation 
afterward. An example volume and the 
corresponding field distribution are demonstrated 
in Figure 3 (top row). 

• Off-resonance effects due to the non-uniform 
field distribution within the voxel. The field 
distribution inside a voxel is not constant which 
creates intravoxel dephasing. Especially when the 
field variation is very strong, this effect manifests 
itself as very strong signal decay. Numerically, this 
effect can be simulated by computing the field 
distribution at a much finer grid and then 
summing the complex signal to emulate MRI 
signal generation. However, the time and memory 
complexity increase exponentially. Therefore, 
here we employed a local quadratic interpolation 
strategy to artificially zoom in to the finer grid 
(2563) from the 33 neighborhoods of each voxel. 
Finally, the estimated field is utilized to compute 
the magnitude signal decay. This process is 
visualized in Figure 3 (bottom row).  

Further acceleration (for the last 2 steps) to the 
above process is achieved by creating a dataset 
(N=30K) of pre-computed voxel signals given OEF, 
CBV, background susceptibility (defined by QSM map), 
and 33 neighborhood field values. A multi-layer 
perceptron (MLP) is trained with the pre-computed 
dataset for the fast estimation of complex mGRE 

signals. To guarantee the smoothness of the output, 
both the phase and the natural logarithm of the 
magnitude were forced to be 3rd order polynomials by 
simply estimating the polynomial coefficients by the 
network. The MLP had 5 layers with ReLU activation 
function and (30,64,64,64,6) neurons in each layer. 
The final layer outputs the polynomial coefficients 
excluding constant value (assuming unit magnitude 
and zero phase at t=0). It is trained for 1e6 epochs 
using mean-square error (MSE) loss and 75% training 
and 25% validation split with learning rate 1e-5.  

3.3. Inverse Mapping of OEF Using Simulated Data 

As discussed before, the generated data can be 
utilized for the supervised training of a neural network 
for the inverse mapping of signal source distributions 
such as OEF and CBV. Following the QSM + 
quantitative blood oxygenation level-dependent 
signal modeling of mGRE data (Cho, Spincemaille, et 
al., 2021), a 3D U-net (Ronneberger et al., 2015) was 
trained. The magnitude of mGRE data and the 
reconstructed QSM map were utilized as input maps 
concatenated in the channel dimension, and OEF and 
CBV maps were estimated in the output layer. The QSM 
map is reconstructed using the maximum spherical 
mean value filtering (mSMV) algorithm (Roberts et al., 
2024) to get the whole-brain QSM and mimic the in 
vivo data processing. The employed U-net 
architecture is demonstrated in Figure 4. The training 
and validation data consisted of 40 and 10 simulated 
mGRE data and corresponding OEF and CBV maps, 
respectively. It is trained for 1000 epochs with MSE 
loss and 1e-4 learning rate. The network weights with 
the smallest validation loss were saved and used for 
further analysis. Complex Gaussian noise is added to 
the simulated mGRE data before training. 

Simulated mGRE data were compared with real MRI 
data. The OEF estimation results were evaluated using 
an additional simulated test case, a healthy dataset 
from a healthy subject with both mGRE and 15o-PET 
OEF, and a stroke patient mGRE scan. The acquisition 
details for the healthy subject and stroke patient can 
be found in (Wu et al., 2021) and (Cho, Spincemaille, et 
al., 2021), respectively. 

4. Results and Discussion 

The simulated field maps through the QSM simulation 
and dipole convolution process are shown in Figure 5. 
The tissue field reflects the magnetic field 
perturbation due to the susceptibility sources inside 
the brain tissue. The microstructural field 
demonstrates the field perturbation in the white 
matter that cannot be simply explained by the local 
sources. Background field which is in general an order 
of magnitude larger than the tissue field is generated 
by the susceptibility sources outside of the brain. 
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Three examples of complex mGRE signals 
estimated via the MLP are given in Figure 6. As can be 
seen, the predictions do not match with the truths 
perfectly, even though the smoothness of the data is 
preserved. When the signal magnitude decays to the 
signal floor, the truth signal presents a random 
pattern, the network predictions, on the other hand, 
preserve a well-behaved pattern in both magnitude 
and phase. The accuracy needs to be improved by 
further training with more data. 

Figure 7 depicts an example of the simulated mGRE 
data. Magnitude data presents T1 weighting in the first 
echo and with increasing echo times, R2* decay 
dominates. Microstructural and off-resonance effects 
manifest with later echoes as well. Phase on the other 
hand carries mainly the information coming from the 
simulated QSM and field maps. 

In Figure 8, example slices from a reconstructed 
QSM map from the simulated mGRE data in Figure 7 
are shown. There are three benefits of reconstructing 
QSM back from the final simulated data rather than 
direct usage of the initial simulated QSM. First, the 
microstructural field can be included in the data after 
dipole convolution. Secondly, the reconstructed map 
shares the same image quality as the QSM map 
obtained through the same reconstruction from in vivo 
data. Finally, the added complex Gaussian noise aligns 
with the real measurements better than any noise 
added to QSM directly.  

To evaluate the effectiveness of the proposed mGRE 
simulation method, real mGRE data from 5 healthy 
subjects were acquired. Acquired results as well as 5 
simulation examples were registered to the MNI 
standard space in which pairwise structural similarity 
index measures (SSIM) were calculated both for the 
combined magnitude and QSM images using only the 
brain regions (excluding skull and skin). Figure 9 
shows example images from both real and simulated 
data and the heatmap for pairwise comparisons of the 
all data. Upper half of the heatmap is used for the 
magnitude comparisons whereas the bottom half 
presents the QSM comparisons. Visually both 
magnitude and QSM images seem to show high 
correlation except for some minor differences such as 
on the skin. This difference is majorly coming from 
the unmodeled MRI properties that can be addressed 
in the future. Quantitatively, QSM maps have 
comparable SSIM scores between real and simulated 

data with the SSIM scores real data have with each 
other. Magnitude on the other hand has relatively low 

Figure 6. Examples from mGRE signal generation from 
the trained MLP. Each row represents the magnitude and 
phase of the mGRE signal corresponding to a single voxel 
of the simulated data. 

Figure 5. The simulated field from brain tissue components only 
(tissue field), including microstructural field, and including the 
background field (field caused by air tissue interfaces). 

Figure 7. The simulated field from brain tissue components only 
(tissue field), including microstructural field, and including the 
background field (field caused by air tissue interfaces). 
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Figure 10. The true and predicted OEF distributions of the 
simulated test case. SSIM: Structural similarity, MSE: Mean 
squared error, MAE: Mean absolute error. 

scores compared to the real QSM data have with each 
other. However, for magnitude data, simulation and 
real data similarity is relatively lower (upper right 
quadrant). Even though the difference is not extremely 

high (0.72 vs 0.85), this result shows that more 
improvements in the magnitude is necessary. 

The estimated OEF map from the simulated test 
case is demonstrated in Figure 10 as well as the true 
distribution. As quantitative metrics, SSIM, mean 
squared error (MSE) and mean absolute error (MAE) 
are also given. The maps visually show perfect 
consistency while quantitative metrics support it. This 
example suggests that the network is capable of 
estimating the OEF map accurately for the simulated 
data. 

Figure 11 presents the performance of the trained 
network on in vivo data. Similar to the simulated test 
case, the network performs very well with the in vivo 
data as well. The 15O-PET based and the network-
predicted OEF maps show similar distributions except 
for a certain level of underestimation in the occipital 
lobe in the predicted map. The quantitative metrics 
again show a high level of consistency between the 
two maps.  

Finally, the estimated OEF maps from the mGRE 
data collected from a stroke patient 58 hours, and 9 
days after stroke onset are shown in Figure 12 in 
addition to the diffusion-weighted images (DWI) and 
T2-FLAIR.  DWI and T2FLAIR show the stroke lesion 
clearly at the early time point and the corresponding 
OEF map also presents the decreased OEF in the lesion. 
In the second time point, the patient shows significant 
recovery and the OEF map supports it. 

Figure 8. The reconstructed QSM map from the simulated mGRE 
data using mSMV. 

Figure 11. The 15O-PET based and the predicted OEF distributions 
of the in vivo test case. Prediction map is estimated purely from 
measured mGRE data. SSIM: Structural similarity, MSE: Mean 
squared error, MAE: Mean absolute error. 

Figure 9. Comparison of real and simulated mGRE data. 5 real cases 
are acquired from different subjects and compared with 5 
simulated brains. Each box shows the SSIM between the two 
magnitude (upper half) or two QSM (bottom half) images only in 
the brain regions. 
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5. Conclusions 

In this study, we presented a novel way to simulate 
MRI mGRE data using prior structural information and 
designed microstructural and physiological 
distributions. The developed framework can be 
utilized for in silico validation for qMRI 
acquisition/reconstruction methods as well as 
supervised training of deep learning models as shown 
here. The neural network trained to estimate OEF 
distribution from noninvasive MRI data showed high 
accuracy in simulation and high consistency with the 
reference gold-standard 15O-PET based OEF map. 
Furthermore, it successfully showed the stroke lesion 
where tissue oxygenation is interrupted. The proposed 
method can be utilized in the clinical procedures as a 
noninvasive OEF estimation method. The simulated 
mGRE data magnitude can potentially be improved to 
present more similarity with the real MRI data. Future 
studies will focus on ways to increase the accuracy and 
efficiency of the developed methods. For instance, 
physical modeling of blood flow can also be 
incorporated for increased accuracy of the model such 
as using computational fluid dynamics (CFD) 
(Fragomeni, 2023).  
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