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Abstract
Calibration, as an evaluation criterion for classification models, is often not given as much consideration as discrimination, possiblybecause it is harder to measure. Nevertheless, it is a crucial measure in biomedical data analysis, because a probability estimate by amodel should reflect the relative frequency with which it occurs. Poor calibration can lead to suboptimal decisions; by ensuring a closecorrespondence between predicted probabilities and actual chance of outcome, medical professionals can make these decisions in themost informed manner possible.We consider the special case of binary classification, and calibration measures for this task. We show how the multi-class calibrationmeasure expected calibration error can be adapted to the two-class case, and used directly as a loss function in training neural networkmodels. We also consider the alternative two-class calibration measure of the Hosmer-Lemeshow test statistic, and demonstrateempirically how calibration measures, both stand-alone and in combination with cross-entropy error, can serve as loss functions forclassifying two sample data sets from the biomedical domain. Our experiments demonstrate that explicitly optimizing for calibrationloss results in models that are well calibrated without losing their ability to discriminate between two classes.
Keywords: Calibration error; neural network loss functions; neural network calibration.

1. Introduction

In the biomedical domain, the performance of binary clas-sifiers is often assessed by two distinct metrics that mea-sures their discriminatory power and their calibration.When a binary classifier calculates an estimate p̂i of theclass 1 membership probability P(class = 1 | xi) for a givenfeature vector xi, its discriminatory power is most oftenassessed by the area under the ROC curve (AUC) (Hanleyand McNeil, 1982; Lasko et al., 2005; Zou et al., 2007), al-though this is not without controversy (Cook, 2007; Hand,2009; Flach et al., 2011; Janssens and Martens, 2020).
It is far harder to evaluate the calibration of a binary clas-sifier, because — in contrast to discrimination — thereis no gold standard against which a classifier output inthe form of a class-membership probability can be mea-sured (Van Calster et al., 2019; Silva Filho et al., 2023). Fora long time, the de-facto standard for measuring classi-fier calibration was the Hosmer-Lemeshow variant of a

chi-squared goodness-of-fit test (Hosmer and Lemeshow,1980, 2000); several improvements were subsequentlypublished in the literature (Pigeon and Heyse, 1999a,b)after minor flaws in the methodology were exposed (Kuss,2002; Hosmer et al., 1997). Alternatively, calibration isalso commonly assessed via graphical means (Copas, 1983;Finazzi et al., 2011; Austin and Steyerberg, 2014; Nattinoet al., 2017). If a binary classifier is found to be insuffi-ciently calibrated, it can be re-calibrated after training bya variety of methods (Zadrozny and Elkan, 2002; Naeiniet al., 2015).Regarding the calibration of neural network classifiers,and irregardless of how this is assessed, there are conflict-ing reports on how well such models are calibrated: Inan early reference, Niculescu-Mizil and Caruana (2005)report that neural networks are well classified, but thatseems to have changed with deep learning. Guo et al. (2017)observe that such deep neural networks, usually trainedby minimizing a negative log-likelihood loss function, are
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not well calibrated. However, the authors note that a sim-ple variant of Platt scaling (Platt, 1999) that they call tem-
perature scaling can improve the calibration of classifiersin a post-processing step.The uncertain stature of the calibration of deep learningmodels has motivated research into loss functions thatdirectly incorporate terms that penalize models that arenot well-calibrated. An overview of the literature on thistopic is given in Section 2.In this work, we investigate how calibration measurescan be incorporated specifically in binary classifiers. Wewant to empirically assess the performance of such classi-fiers on much smaller data sets than usually analyzed indeep learning settings, such as the data sets available formost biomedical binary classification tasks. In Section 3,we argue that there is a subtle but important differencebetween calibration measures in multi-class vs. binaryclassification settings. We modify calibration measuresused in deep learning for multi-class problems to takeadvantage of these differences.The results of applying such alternative loss functionsto biomedical classification problems are presented in Sec-tion 4. We give concluding remarks in Section 5.
2. State of the Art

Interest in the calibration of deep learning models hassignificantly increased in recent years, mostly spurredby the publication of Guo et al. (2017) that deep-learningmodels trained on maximum likelihood-derived loss func-tions can exhibit poor calibration. One must note that cali-bration in the context of deep learning models is usuallymeasured by expected calibration error (Naeini et al., 2015),which — similarly to the groupings originally introductedby Hosmer and Lemeshow (1980) — uses bins Bk to groupprobability estimates. Recall that for binary classification,
p̂i is the class 1 membership probability P(class = 1 | xi) forfeature vector xi. For more than two classes, (Naeini et al.,2015) define p̂′

i to be the highest probability estimate overall classes. Note that these are not the same, and we usetwo different symbols p̂′
i and p̂i to distinguish them. Writ-ing yi for the correct (gold standard) class for case i and ŷifor the predicted class (i.e., the class for which p̂i is high-est), they further define the accuracy acc and confidenceconf of bins Bk (of case indices) as

acc(Bk) := 1|Bk|
∑
i∈Bk

1(ŷi = yi) (1)

and
conf(Bk) := 1|Bk|

∑
i∈Bk

p̂′
i . (2)

Thus, acc is the same as the traditional accuracy metricin machine learning, and conf is how high (close to 1) theaverage highest probability assessment is in a bin.

With these terms, K denoting the number of bins, and nbeing the total number of cases, expected calibration error(ECE) is defined as
ECE := K∑

k=1
|Bk|

n |acc(Bk) – conf(Bk)|, (3)
the bin-size-weighted average difference between the ac-curacy and confidence terms. Due to the binning and thediscrete counting operation via the indicator function 1in the definition of accuracy in Equation (1), ECE is notdirectly suitable as a (component of a) loss function inneural network training. Recently, Bohdal et al. (2023)introduced the notion of differentiable expected calibration
error DECE to remedy this situation. DECE uses soft bin-
ning, which learns a simple model of the probability ok,ithat the highest probability estimate p̂i of case i is placedinto bin Bk. With this, and n now denoting the number ofcases in a minibatch, DECE is defined as

DECE := K∑
k=1

∑n
i=1 oki

n |acc(Bk) – conf(Bk)|. (4)
Comparing this expression with the definition of ECE inEquation 3, one can observe that the set size term |Bk|is now replaced by the sum term ∑n

i=1 oki that estimateshow many elements of a minibatch belong to bin Bk. InEquation 4, the terms for accuracy and confidence alsohave to be modified slightly to
acc(Bk) := 1∑n

i=1 oki

n∑
i=1

oki1(ŷi = yi) (5)
and

conf(Bk) := 1∑n
i=1 oki

n∑
i=1

okip̂′
i , (6)

where the sum terms ∑n
i=1 oki again play a similar role.

Bohdal et al. (2023) report that using DECE as partof a meta-calibration setup improves model calibrationspecifically also on test sets. Other authors employ soft-calibration variants of ECE directly in loss functions, com-bined with standard negative log-likelihood terms (Kumaret al., 2018; Karandikar et al., 2021).
The literature also contains publications that do notemploy ECE or DECE, such as the work of Mukhoti et al.(2020), Einbinder et al. (2022) and Tao et al. (2023). Aliterature overview on calibration in the context of neuralnetworks is given by Wang (2024); Minderer et al. (2021)report on a thorough investigation of various factors inneural network design that influence the calibration ofmodels.
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3. Materials and Methods
The problem domain of binary classification and its asso-ciated measures of calibration is subtly different from themore prevalent multi-class classification tasks encoun-tered in deep learning settings. In particular, calibrationmeasures such as those of Hosmer and Lemeshow (2000)and its variants measure the agreement between the fol-lowing two binned entities:
• Average true class 1 prevalence ȳk = 1|Bk|

∑
i∈Bk

yi, and
• average class 1 membership probability estimates p̄k =1|Bk|

∑
i∈Bk

p̂i,
with the notation introduced in Section 2. The originalgoodness-of-fit test statistic for the calibration of a logisticregression model (Hosmer and Lemeshow, 1980) can thenbe written as

K∑
k=1

|Bk|
[ (p̄k – ȳk)2

p̄k
+
((1 – p̄k) – (1 – ȳk))2

(1 – p̄k)
]

. (7)
This test statistic was empirically observed to follow a chi-squared distribution with K – 2 degree of freedoms whenevaluated on the training set, and K degrees of freedomwhen evaluated on the test set.Note that the terms ȳk and p̄k differ from the termsused in the definitions of accuracy and confidence in Equa-tions (1) and (2) in the following way:
• Accuracy measures the average agreement between pre-dicted and true class, and is thus model-dependent. Av-erage true class 1 prevalence ȳk is model-independent.• Confidence employs p̂′

i, the highest probability estimatefor a given case (the probability estimate of the mostlikely class), whereas estimated class-membershipprobability p̂i for binary classification is always forclass 1.
We can now modify ECE, as given in Equation (3), to usethe terms particular to binary classification. We denotethis variant by BECE, defined as

BECE := K∑
k=1

|Bk|
n |ȳk – p̄k|, (8)

and use it as a loss function, or as a component of a lossfunction, much the same way as ECE is used in deep learn-ing research.In summary, we set out to investigate how well the fol-lowing loss functions perform, both in terms of calibrationand discrimination, on two small sample data sets fromthe biomedical domain. As above, let p̂ and y denote thevectors of estimated class 1 membership probabilities andthe true class labels (0 or 1), respectively, for a data set ofsize n. The binary cross entropy loss function is includedhere both as a baseline reference, and as a component ofother loss functions:

• Binary cross entropy LBCE(p̂, y) := – 1
n
∑n

i=1
[

yi log(p̂i) +(1 – yi) log(1 – p̂i)]
• Binary expected calibration error LBECE(p̂, y) :=∑K

k=1 |Bk|
n |ȳk – p̄k|,

• Hosmer-Lemeshow calibration error LHL(p̂, y) :=∑K
k=1 |Bk|

[
(p̄k–ȳk)2

p̄k
+
((1–p̄k)–(1–ȳk))2

(1–p̄k)
]

.
• Combined cross-entropy/expected calibration error

LBCE-BECE(p̂, y) := αLBCE(p̂, y) + (1 – α) LBECE(p̂, y).
• Combined cross-entropy/Hosmer-Lemeshow error

LBCE-HL(p̂, y) := βLBCE(p̂, y) + (1 – β) LHL(p̂, y).
In the last two of these, the hyperparametersα andβweighthe relative contributions of the two error terms. Thesehyperparameters have to be estimated empirically, e.g. bycross-validation. In contrast, the hyperparameter K ofnumbers of bins is usually set to a fixed size of 10.Note that there are two possible approaches to imple-menting the binning process necessary for calculating thecalibration terms in the loss functions: Either divide theinterval [0, 1] into K equal-width parts, or divide the sortedprobability estimate vector p̂ into K parts of (nearly) equalsize. We decided on the first alternative to avoid the non-differentiable sorting operation that would prevent gradi-ent flow during the network training process.All experiments were implemented in Python 3.11 andPytorch 2.2.1. Final model assessment was performed withthe pycaleva package (Weigl, 2022) that computes the areaunder the ROC curve, the Hosmer-Lemeshow and Pigeon-Heyse variants of a goodness-of-fit test, and the calibra-tion belt figure of Finazzi et al. (2011).We performed the experiments summarized in Sec-tion 4 on the following two data sets:
AcuteMyocardial Infarction Data SetThis data set comprises information on 1253 patients withsymptoms of acute myocardial infarction collected at theEdinburgh Royal Infirmary in Scotland in 1993–1994; themodeling task is to predict whether these patients havea heart attack. Patient data consists of 3 numerical and29 binary features, with a class distribution of 274 pos-itives, and 979 negatives. The numerical features werestandardized to mean zero and standard devtion 1. Thegold standard diagnosis of presence or absence of AMI wasobtained by majority voting of three independent experts.More details on the data set can be found in the originalpublication (Kennedy et al., 1996).
Coronary Artery Disease Data SetThis second data set from the domain of cardiovasculardisease prediction was collected by four study centers inthe United States, Hungary and Switzerland between 1981and 1987 (Detrano et al., 1989). It consists of 918 cases(410 negative, 508 positive) with 11 features, 5 of whichare numerical, and 6 categorical. We removed two features
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related to ST elevation, because these are highly corre-lated with the gold standard; including these makes themodeling task much easier. Again, the numerical featureswere standardized, and the categorical features one-hotencoded. For this data set, the task is to predict the pres-ence or absence of coronary artery disease.
4. Results and Discussion

This section summarizes our experiments of all combina-tions of the five loss functions and the two data sets. Dueto the small size of the data sets, the neural network modelarchitecture was kept very simple, at just one hidden layerwith 20 neurons. We employed the Adam optimizer with aconstant learning rate of η = 0.0001, and did not do any L1or L2 regularization. Since the goal of our experiments isnot to find the optimal model, but to check what influencevarious loss functions have on performance metrics, wefound this choice to be justified. All numbers below wereobtained on a test set that consisted of a random subsetcontaining 30% of the original data set; the remaining 70%made up the training set. Note that the calibration curvesin all the figures in this section employ the deciles of riskdata grouping strategy, where the bins are made up of anequal number of p̂i estimates. Therefore, the points on thecalibration curves are not equally spaced on the x-axis.The pycaleva package reports on a number of differentmetrics, which are also included in the figures generatedby this package. These metrics are:
• The Brier score 1

n
∑n

i=1(p̂i – yi)2, the average sum-of-squares difference between model outputs and groundtruth (Brier, 1950);• the adaptive calibration error ACE which, for binary clas-sification, corresponds to BECE with binnings accord-ing to sorted probabilities, and not fixed cutoffs (Nixonet al., 2019);• the maximum calibration error MCE := max1≤k≤n|p̄k –
ȳk|, i.e., the largest difference between average esti-mated class 1 membership and true class 1 membershipover all bins, and• the area within LOWESS curve, i.e., the area between anonparametrically smoothed curve of the (p̂i, yi) scatterplot and the diagonal line indicating perfect calibration(Weigl, 2022).

4.1. Results on Acute Myocardial Infarction Data Set

We first trained our model using the binary cross-entropyloss as a baseline. In terms of calibration, one can observethat overtraining only has a small effect on the area underROC curve, but does greatly effect the calibration of themodel. This can be seen in Figure 1, where the left plotshows good calibration, and the right plot poor calibra-tion due to overtraining of the model. In contrast to this,training on the expected calibration error loss showed en-tirely different time evolutions, with the results reversed

compared to binary cross-entropy loss (see Figure 2, withthe left plot displaying undertraining, and the right plotgood model fit) . The same characteristics can be seen inthe plots for the Hosmer-Lemeshow loss (in Figure 3),where models are still undertrained after 4000 epochs(left plot), but do not exhibit overtraining even after amuch larger number of epochs (right plot). As a last se-ries of experiments, we combined binary cross-entropyerror with the calibration errors for two new loss func-tions, as described above. The relative weightings of theerror and calibration terms were set to α = 0.5 and β = 0.5in these experiments. Figure 4 shows the results of com-bining cross-entropy error with the binary expected cali-bration error; one can observe sufficient calibration after4000 epochs (left plot), but overtraining starts alreadyafter 8000 epochs (right plot). The situation is reversedwhen combining cross-entropy error with the Hosmer-Lemeshow calibration term, as can be seen in Figure 5:After 4000 epochs, the network is still undertrained (leftplot), whereas it shows decent calibration and no over-training even after 20000 epochs (right plot).The metrics for all these training runs are summarizedin Table 1. Note that some error functions tend to over-training (LBCE, LBCE-BECE), while others are more robustand can also be trained with a higher number of epochs(LBECE, LHL, LBCE-HL). However, these error functions needmore training time, as they exhibit poor performance witha lower number of training epochs.
4.2. Results on Coronary Artery Disease Data Set

We ran the same series of experiments also on our seconddata set. Here, we do not show the same calibration curvesan in Section 4.1, but rather highlight how the calibrationbelts introduced by Finazzi et al. (2011) can provide analternative visual assessment of a model’s calibration. Atotal of four such plots are given in Figures 6 and Figures 7;in the left plots, one can observe visually that the modelsare not well calibrated.All the performance metrics are summarized in Table 2.It can be seen that compared to the results of Table 1, under-fitting the models requires training with far fewer epochs,i.e., there is a wider range of possible epoch values in whichthe models have adequate calibration. What is similar tothe results on the acute mycardial infarction data set isthe discrepency between discrimination and calibrationmeasures: while some models are well calibrated and oth-ers are not, the discriminatory ability of the models, asmeasured by AUC curve, is in most cases on the same level,with the poorly calibrated models only a few percentagesbelow the well-calibrated models.
4.3. Discussion

In the last years, there have been a number of publicationsinvestigating the calibration of (mostly deep) neural net-work models (Guo et al., 2017; Kumar et al., 2018; Mukhotiet al., 2020; Karandikar et al., 2021; Bohdal et al., 2023) on
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Figure 1. Two calibration curves of our neural network trained on the acute myocardial infarction data set using the binary cross-entropy error function.The left plot shows calibration after 4000 epochs, and the right after 8000 epochs. One can clearly observe calibration getting worse, which is also evidencedby the metrics given in the plots. The red triangles are the points (p̂k, ŷk) for K = 10 bins; the tick marks along the x-axis represent the distribution ofprobability estimates p̂i for n = 376 data points.

Figure 2. Two calibration curves of our neural network trained on the acute myocardial infarction data set, but now using the expected calibration errorloss function. The left plot shows calibration after 4000 epochs, the right after 20000 epochs.

Figure 3. Two calibration curves of our neural network trained on the acute myocardial infarction data set with the Hosmer-Lemeshow loss function. Theleft plot shows calibration after 4000 epochs, the right after 20000 epochs.
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Figure 4. Two calibration curves of our neural network trained on the acute myocardial infarction data set with a combination of the binary cross-entropyand the binary expected calibration error loss loss functions. The left plot shows calibration after 4000 epochs, the right after 8000 epochs.

Figure 5. Two calibration curves of our neural network trained on the acute myocardial infarction data set with a combination of the binary cross-entropyand the Hosmer-Lemeshow calibration error loss loss functions. The left plot shows calibration after 4000 epochs, the right after 20000 epochs.

Table 1. Performance metrics of neural network models trained using different loss functions on the acute myocardial infarction data set. In addition to thenumber of epochs for training the network, the metrics listed are AUC (area under the ROC curve), ACE (expected calibration error for K = 10 groups,same as ECE for binary classifiers), p-value (of the Pigeon-Heyse improvement to the Hosmer-Lemeshow goodness-of-fit test), and AWLC (area withinLOWESS curve). The definitions of the loss functions are given in Section 3.
good calibration poor calibrationMetric LBCE LBECE LHL LBCE-BECE LBCE-HL LBCE LBECE LHL LBCE-BECE LBCE-HL

epochs 4000 20000 20000 4000 20000 8000 4000 4000 8000 4000AUC 0.878 0.856 0.836 0.877 0.845 0.854 0.472 0.431 0.877 0.410ACE 0.038 0.037 0.047 0.032 0.036 0.081 0.073 0.080 0.052 0.114
p-value 0.720 0.265 0.242 0.480 0.856 < 0.0001 0.005 0.046 < 0.0001 < 0.0001AWLC 0.031 0.029 0.053 0.036 0.038 0.119 0.557 0.620 0.075 0.429

Table 2. Performance metrics of neural network models trained using different loss functions on the coronary artery disease data set. All notations are thesame as in Table 1.
good calibration poor calibrationMetric LBCE LBECE LHL LBCE-BECE LBCE-HL LBCE LBECE LHL LBCE-BECE LBCE-HL

epochs 4000 20000 20000 8000 8000 10000 1000 1000 1000 1000AUC 0.914 0.906 0.912 0.903 0.897 0.884 0.882 0.615 0.862 0.531ACE 0.046 0.068 0.042 0.063 0.073 0.087 0.102 0.082 0.105 0.082
p-value 0.777 0.219 0.784 0.167 0.349 < 0.0001 0.049 0.494 0.023 0.159AWLC 0.039 0.027 0.045 0.044 0.038 0.060 0.091 0.160 0.105 0.146
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Figure 6. Two calibration belts of our neural network trained on the coronary artery disease data set with the binary expected calibration error lossfunctions. The left plot shows calibration after 1000 epochs, the right after 20000 epochs.

Figure 7. Two calibration belts of our neural network trained on the coronary artery disease data set with the Hosmer-Lemeshow loss function. The leftplot shows calibration after 1000 epochs, the right after 20000 epochs.

multi-class classification tasks. In this work, we focusedon binary classification and demonstrated that in this case,expected calibration error ECE can directly be used as aloss function for neural network training. We saw thatmodels trained on these loss functions exhibit character-istics similar to the ones trained on binary cross-entropyloss, the loss function more traditionally used for thesetasks.
In particular, what can be observed from a synopsis ofthe results on both data sets is the following:

• Models trained with binary cross-entropy loss func-tion can be overtrained more easily compared to thosetrained on calibration losses.• Visual inspection of calibration curves and belts is moreinformative than blindly trusting the p-values of cali-bration tests. This can be seen in the left plot of Figure 3,where the model is clearly not calibrated well, but the
p-value of the Pigeon-Heyse test is barely significant at0.046; and in the left plot of Figure 7, with a p-value of0.494, but very poor calibration due to a narrow rangeof probability estimate p̂i.• Models trained on calibration losses nevertheless ex-

hibit good AUC values.• It is easily possible to combine binary cross-entropyloss with calibration loss functions, and the perfor-mance of models trained with these losses is compara-ble to the performance of models trained only on eithercross-entropy or calibration loss.

5. Conclusion

This work focuses on loss functions that include calibra-tion terms in order to emphasize the importance of cal-ibration in properly trained predictive models. This ap-proach is particularly important in the domain of biomedi-cal data analysis, where diagnosis and treatment decisionsare based in no small part on the probabilities of putativefindings. While a binary threshold of 0.5 may treat all prob-ability estimates larger than that as positive, it is clear thatthere is a large difference between estimates of 0.51 and0.99. Physicians may act differently when presented withthese different values; acting on this difference is sensibleonly when these values are an accurate representation ofthe ground truth probabilities.
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We demonstrated empirically that models trained onloss functions that optimize for calibration performanceare able to achieve results comparable to models trained onbinary cross-entropy error. The novelty of our approachlies in making calibration error a central component of ourloss function; this is not traditionally done when trainingpredictive models, even in fields where well-calibratedmodels are of primary importance.
We note that these investigations will still need to beexpanded to more diverse and larger data sets, possiblyalso from other domains, before the findings reported herecan be seen as conclusive evidence that calibration lossesare viable alternatives to more established loss functions.Future work can expand and improve upon the results pre-sented here by developing other variants of incorporatingcalibration terms into loss functions, and evaluating thesevariants in a wider range of application areas.
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