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Abstract
Glioblastoma, the most aggressive form of primary brain tumor, presents significant challenges in clinical management and researchdue to its invasive nature and resistance to standard therapies. Mathematical modeling offers a promising avenue to understand itscomplex dynamics and develop innovative treatment strategies. Building upon previous research, this paper reviews and adapts someexisting mathematical formulations to the modeling study of glioblastoma infiltration and growth, utilizing the Partial DifferentialEquation (PDE) formalism to describe the time-varying and space-dependent cancer cell density. Experimental data from the literatureare nicely reproduced and can be better interpreted based on the model behavior. Simulations highlight that the proposed framework ispromising for further investigations.
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1. Introduction

Glioblastoma, the most aggressive type of primary braintumor, poses a formidable challenge in both clinical prac-tice and biomedical research. Known for its relentless in-vasion of healthy brain tissue and resistance to conven-tional treatments, glioblastoma represents a complex in-terplay of genetic, molecular, and microenvironmentalfactors. Despite advancements in surgery, chemotherapy,and radiation therapy, the median survival for patientswith glioblastoma remains dismally low, emphasizing theurgent need for innovative approaches (Wirsching andWeller, 2017).
Within the realm of mathematical modeling and

simulation, glioblastoma serves as a compelling frontier,inviting researchers to explore its intricate dynamicsand devise strategies to combat its formidable nature. Byintegrating mathematical frameworks with biologicalinsights, researchers aim to unravel the underlyingmechanisms driving glioblastoma progression, predicttreatment responses, and identify novel therapeutictargets.In this context, several authors (see e.g. Hatzikirouet al. (2005); Stein et al. (2007); Engwer et al. (2015);Conte and Surulescu (2021); Falco et al. (2021); Kumaret al. (2021); Jørgensen et al. (2023)) have developedoriginal mathematical models of glioblastoma growth orreviewed existing ones. Among them, Stein et al. (2007),
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for example, provided a new mathematical model forthe increase in both invasive and central glioblastomaradius over time. Conte and Surulescu (2021) proposedmultiscale modeling of glioma invasion with a focus ontissue anisotropy. In the recent review paper by Falco et al.(2021), various proposed models were explored, classified,and the significant advances of each were highlighted.

1.1. Contributions

In this work, we tackle the problem of mesoscopicmathematical modeling and simulation of glioblastoma,leveraging computational tools to dissect its complexities,as a preliminary step to pave the way for transformativeinterventions. By mesoscopic modeling we refer tocapturing both the mean-field behavior (macroscopicequation) and the stochastic fluctuations of tumor behav-ior at the population level, rather than at the single-cell(microscopic) level (van Kampen, 2007). In particular, webuild on our previous work by Pompa et al. (2023), whichintroduced an Agent-Based Model (ABM) simulating theinfiltration of glioblastoma into the neighboring healthybrain tissue, by integrating variable cell movement andreplication rates influenced by internal energy levels.We here complement the previous computational workfrom a more theoretical perspective, by providing somedata-informed physics-based design relying on partialdifferential equation (PDE) modeling, representing adiffusion-reaction system, and pointing out connectionswith and stochastic modeling and simulation, stillmanaging to align quantitatively with classical reporteddata from the literature (Stein et al., 2007). We proposealternative models for the radial position of (proliferating)tumor cells, together with a model-based characterizationof the tumour core and invasion radii, by also exploitingmodel order reduction techniques (Borri et al., 2019)to turn the infinite-dimensional PDE systems intofinite-dimensional ODE (Ordinary Differential Equation)ones, by preserving their consistency.

1.2. Organization

The paper is structured as follows. In Section 2 the math-ematical tools are introduced together with the availabledata used in the experiments. In Section 3 the glioblastomainfiltration modeling framework is presented, while Sec-tion 4 is devoted to simulation results and their discussion.Section 5 offers concluding remarks.
2. Materials and Methods

While simplistic and restrictive, the model illustrated inthis preliminary section can serve as a foundational frame-work for describing higher-dimensional models that ex-hibit certain properties of symmetry and/or isotropy, sim-

ilar to those explored later in this study.
2.1. Fokker-Planck equation and the related Stochastic

differential equation

Assume that, at the initial time, t = 0, an assembly of in-finite cells are concentrated at the point x0 ∈ R. Theseparticles promptly initiate motion, dispersing in diversedirections along erratic trajectories reminiscent of Brow-nian motion. Consequently, at each subsequent moment
t > 0, we observe the particles distributed throughoutspace, albeit non-uniformly, governed by a probabilitydensity function (pdf), we denote by p(t, x), which sat-isfies the following Partial Differential Equation (PDE),known as the Fokker-Planck (FP) equation:

∂p(t, x)
∂t = – ∂

∂x
(
b(x)p(t, x)) + 12 ∂2

∂x2
(
σ(x)p(t, x)). (1)

The dynamical Stochastic Differential Equation (SDE) as-sociated with the process Xt having as density the solutionto (1) is given by
dXt = b(Xt) d t + σ(Xt) dWt, X0 = x0. (2)

With the condition σ2(x) > 0 for all x, the unique stationarysolution to (1), namely p(t, x) = p̄(x), exists if
Z := ∫+∞

–∞
1

σ2(x)e2 ∫x0 b(ξ)
σ2(ξ) d ξ d x < +∞, (3)

and is given by
p̄(x) = 1

Z
1

σ2(x)e2 ∫x0 b(ξ)
σ2(ξ) d ξ d x. (4)

We note that, if the drift term is zero, namely b(x) = 0,and the diffusion is still constant (σ(x) = σ), the process
Xt in (2) is a shifted scalar Wiener process

dXt = σdWt, X0 = x0, (5)
which differs from the Ornstein–Uhlenbeck process(Doob, 1942) since there is no globally asymptotically sta-ble linear drift. As a consequence, the condition (3) for theexistence and uniqueness of the stationary solution fails.The solution to the Fokker-Planck equation (1), namely

∂p(t, x)
∂t = σ2 ∂2

∂x2 p(t, x), (6)
is the Gaussian density

p(t, x) = 1√2πσ2t e
– (x–x0)2

2σ2t , (7)
describing a continuous-time random walk with mean x0and variance σ2t, linearly increasing with time.
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2.2. Data collection

In this paper we exploit the data reported by Stein et al.(2007), regarding the behavior of two different glioblas-toma cell lines: U87WT and U87∆EGFR, where the latteris a common mutation. As reported in the paper, plots ofthe experimental data were obtained by evaluating digitalphotomicrographs of the midplane of spheroids throughimage processing. In particular:
• the invasive radius, which represents the distance fromthe center of the furthest highly motile cells, is definedas the furthest distance from the center at which thegradient magnitude (averaged over the azimuthal an-gle) is half of its maximum value;• the core radius, where the core represents the centralpart of the tumour spheroid, is instead identified as theset of pixels with an intensity of 0.12 in a scale from 0(darkest pixel) and 1 (lighest pixel) of the gray-scaleimage centered on the tumor spheroid;• the radial cell density at day 3, expressed in [cells/cm3]is obtained directly from the dark pixel density of thedigital photomicrographs.

In particular, we will try to reproduce the data in Figure2 (panels A, B, C) in (Stein et al., 2007), namely the experi-mental time sequence of the invasive radius (panel A) andcore radius (panel B) of the tumour from day 0 to day 7 ofobservations, increasing in time, and the cell density as afunction of radial position at day 3 (panel C).
3. Glioblastoma infiltration modeling
We intend to utilize the technical tools introduced inthe previous section to define macroscopic/mesoscopicstochastic cancer models describing the radial den-sity/position of tumor cells and their aggregate behavior.We build upon our preliminary agent-based model(ABM) formulation (Pompa et al., 2023), by introducingsome features of interest:
• a model natively built in polar coordinates, as opposedto the Cartesian reference model (Pompa et al., 2023),(of particular interest due to the symmetry of the prob-lem);• by inheriting the angular (azimuthal) symmetry andisotropy of cell movements, already assumed in Pompaet al. (2023), the previous point allows to reduce the spa-tial dimension of the model to one (radius only); thisallows to exploit and re-adapt, in part, explicit solu-tions and results available for 1D PDE/SDE models (seeprevious section);• continuity of the model in time and space, withtime/space discretization only employed for simulationpurposes;• reproduction of the behavior of two different cell lines:U87WT (already considered in CINTI) and U87∆EGFR,which is a common mutation, for which we considerthe data reported in Stein et al. (2007), see Section 2.2.

As mentioned in Section 2.2, core and invasive radiiare increasing in the observation period, so a steady-statemodel for radial position would not be realistic. Conse-quently, the simplest non-stationary model we can defineis the pure scalar Wiener (diffusion) process with no drift(b(x) = 0) and constant diffusion (σ(x) = σ) described in(5). By the change of coordinates r = |x|, from (7) one getsthe half-normal density
pdiff(t, r) = √2√

σ2πt e
– r22σ2t , t > 0, r ≥ 0, (8)

satisfying ∫+∞0 pdiff(t, r)dr = 1.
In order to fit the model to the cell density radial dis-tribution at day t = t̄ = 3 from Stein et al. (2007), whichare not normalized (they are expressed in cells/cm3), weconsider the derived model

udiff(t, r) = A · pdiff(t, r) = A
√2√
σ2πt e

– r22σ2t , t > 0, r ≥ 0,
(9)satisfying ∫+∞0 udiff(t, r)dr = A. Notice that the model (9)does not represent a probability density function (pdf),but we assume it is equivalent to it, up to a constant ratio

A. As a comparison term, we also consider another plau-sible model with decreasing behavior and with the samenumber of free parameters (equal to 2), i.e. an exponen-tially decreasing function:
uexp(r) = A · pexp(r) = Aλe–λr, r ≥ 0, (10)

satisfying ∫+∞0 pexp(r)dr = 1 and ∫+∞0 uexp(r)dr = A.A refinement of the previous simplistic models wouldconsist in adding to the FP equation (6) of the pure dif-fusion case a reaction term, so that the spatio-temporalevolution of the one-dimensional concentration u(x, t) oftumor cells can be well described by a Reaction-DiffusionPDE, also known as KPP-Fisher Equation (see e.g. eq. (1)of Stein et al. (2007)):
∂u(t, x)

∂t = D∂2u(t, x)
∂x2 + gu(t, x)(1 – u(t, x)

umax
) , (11)

whose solutionuKPP(t, x) can be recast in radial coordinatesby setting r = |x|, and where
• g is the proliferation rate;• D is the diffusion constant;• umax is a maximum admissible concentration value,modeling intraspecific competition.

Notice that by setting D = σ22 and g = 0, one easily ob-tains as a result the pure-diffusion density in (7). Due tothe higher number of parameters (equal to four) with re-spect to the exponential and to the pure diffusion model,we expect that the fitted KPP-Fisher model is able to bet-ter capture the experimental tumour cell density behav-
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ior. Note also that the integral AKPP(t) := ∫+∞0 uKPP(t, r)dris non-constant, so the corresponding (normalized) pdfKPP-Fisher model can be obtained by imposingpKPP(t, r) =
uKPP(t, r)/AKPP(t), so that ∫+∞0 pKPP(t, r)dr = 1.

Introducing the non-linear reaction term, we are nolonger able to get an explicit solution. To this end, weexploit the multi-agent method proposed in (Borri et al.,2019) to reduce the spatially continuous PDE model intoa spatially discrete one, by imposing an arbitrary spacediscretization ∆x > 0, which leads to the following infiniteODE system:
u̇i(t) = D

∆x2
(
ui–1(t) – 2ui(t) + ui+1(t)) + gui(t)

(1 – ui(t)
umax

) ,
(12)

for i ∈ Z, where we set ui(t) := uKPP(t, i∆x). By finite trun-cation of the model to the bounded set x ∈ [xmax, xmax],for a proper choice of xmax > 0, the model (12) becomes afinite ODE model, which we are able to integrate by meansof standard ODE solvers.
4. Simulation results

All the computations in this section have been performedin the MATLAB® suite on a ASUS Zenbook laptop with 1.8GHz Intel Core i7-10510U CPU and 16 GB RAM.
The ordinary least squares (OLS) method (Casella andBerger, 2024) is used to fit the parameters A and σ of theposition radial density models (9) and (10), and the param-eters A, σ, g and dmax of the KPP-Fisher model (11)–(12)to the data in Figure 2C from Stein et al. (2007), by mini-mizing the sum of squared differences between observedand predicted values, for both the U87WT and U87∆EGFRcell lines, exploiting the MATLAB® routine fminsearch.
In Figure 1, we show the best fit of the probability den-sity function for a fixed time t = 3 for the three positionmodels proposed. It is readily seen that the half-normalmodel fits the data better with respect to the exponentialmodel, approximately by a factor of 2 in terms of meansquare error, for both cell lines, but both models are out-performed by the reaction-diffusion KPP-Fisher model.
After establishing the superiority of the reaction-diffusion KPP-Fisher model, namely (11), in capturingthe cell density position, in Figure 2 we provide the cell

density predictions in different days, where the MATLAB®routine ode45 is employed to integrate the ODE system(12), with the choice ∆x = 5 and xmax = 1000. In this case,we do not report the normalized pdf pKPP(t, r) but the celldensity uKPP(t, r) in the original coordinates, showing theprogressive increase of the tumour in time and good fitthe data at day 3 from Stein et al. (2007).
Instead, in Figs. 3 we provide an approximate model-based evaluation (based on the fitted KPP-Fisher model) ofthe invasive and core radii, evaluated in terms respectivelyof the 99-th and 90-th percentiles, respectively, of the
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Figure 1. Best fit of the probability density function (pdf) of the radialposition for the U87WT (top panel) and U87∆EGFR cell lines at day 3: datafrom Stein et al. (2007) (blue circles), exponential model (red dashed line),half-normal model (yellow dash-dotted line), KPP-Fisher model (purplesolid line).
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Figure 2. Predictions based on the reaction-diffusion (KPP-Fisher) modelof the probability density function (pdf) of the radial position for the U87WT(top panel) and U87∆EGFR cell lines along a period of 7 days.
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Figure 3. KPP-Fisher model evaluation of the tumour invasive radius (left figure) and core radius (right figure) along a period of 7 days for the U87WT (toppanels) and U87∆EGFR cell lines (bottom panels): data from Stein et al. (2007) (blue circles), KPP-Fisher model (red solid line).

tumour cell pdf, namely
∫ rinvasion(t)

0 pKPP(t, r)dr = 0.99, (13)∫ rcore(t)
0 pKPP(t, r)dr = 0.9, (14)

where the percentile levels have been calibrated based onthe available data and literature to provide reasonably goodresults.
Although Fig. 3 essentially captures the increasingtrend in time of invasive and core radii, we highlight thatthe imperfect matching between the figure and the ex-perimental data of Figures 2A–2B in (Stein et al., 2007)can easily be justified since the model has not been fittedaccounting for such time-varying data from day 0 to 7, butonly based on the density data at day 3. The alternativechoice of fitting the KPP-Fisher model parameters basedon the experimental time course of the radii, as well as theadoption of more complex models able to better capturethe tumour radial expansion behavior, will be object offuture investigation.

5. Conclusions

Glioblastoma poses formidable challenges in clinical prac-tice and research, given its aggressive and treatment-resistant nature, and mathematical modeling emerges asa promising tool to comprehend the intricate dynamicsof this disease and devise novel therapeutic approaches.This study contributes several innovative mathematicalmodels for glioblastoma infiltration and growth. Lever-aging the partial differential equation (PDE) formalism,we characterize the temporal and spatial variations in can-cer cell density. Numerical simulations corroborate the

theoretical findings and nicely replicate literature data.
The presented theoretical framework, informed bycomputational and data-driven approaches, seems able tooffer some insights into tumor progression and poten-tial therapeutic interventions. Regarding ongoing andfuture work, we highlight that the proposed design al-lows for versatile expansion, enabling the study of diversecell sub-populations, tumor-immune system interactions,and personalized therapy strategies.
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