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Abstract

KDM5A, implicated in diverse cancer types, including breast cancer, serves as a crucial regulator of tumor progression, metastasis, and
drug resistance. As a histone demethylase, targeting KDM5A presents a promising therapeutic strategy. We used a library of 61,612
compounds, some of which were triazole-like ligands, to generate binding poses targeting the KDM5A catalytic pocket. Different
chemoinformatic and bioinformatic techniques were used, such as molecular fingerprints, Tanimoto similarity, and Autodock Vina
through Deepchem. Triazole derivatives 700, 91, and 449 were the best at inhibiting KDM5A demethylase activity. It was found that
compound 700 had a stronger binding affinity for KDM5A and lower IC50 values, at -11.042 kcal/mol and 0.01 M, compared to
doxorubicin, a well-known breast cancer inhibitor. Furthermore, triazole compounds 91 and 499 demonstrated promising potential as
KDM5A inhibitors. This study of triazole-like molecules for virtual screening suggests a workflow to identify triazole derivative drugs

that are selective for KDM5A-type cancer.
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1. Introduction

An increase in genetic changes that interfere with regular
cellular functions and control systems, resulting in abnor-
mal and varied cell growth, is what leads to the develop-
ment of cancer (Elmorsy et al., 2023). Cancer can be caused
by various factors, such as genetics, environmental expo-
sures, and molecular-level changes (Schmitt and Greten).
This complexity makes it challenging to understand the
mechanisms of cancer and develop targeted treatments.
Molecular docking has emerged as a computer-based tech-
nique facilitating the identification and optimization of
potential therapeutic agents (Eberhardt et al., 2021; Fries-
ner etal., 2004). As discussed in numerous studies, molec-
ular docking is effective in predicting the binding affin-

ity and orientation of small molecules to target proteins
(Yangetal., 2019; Li et al., 2024). Molecular docking and
high-throughput screening have made it faster to find
new drugs that stop proteins like kinases, proteases, and
receptor tyrosine kinases that cause cancer (Jurutka et al.,
2021).

It is an enzyme that is part of a group of histone
demethylases called Jumonji C (JmjC) (Jose et al., 2020). It
is also known as Lysine Demethylase 5A or JARID1A. This
enzyme removes tri- and di-methylated lysine 4 from hi-
stone H3 (H3K4me3 and H3K4me2) (Horton et al., 2016).
Since this change is usually linked to active gene transcrip-
tion, KDM5A is very important for controlling gene expres-
sion because it removes these activating marks and helps
stop transcription. By demethylating H3K4me3/2, KDM5A
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acts to repress the transcription of various genes. KDM5A
is often overexpressed in several types of cancer, includ-
ing breast, prostate, and lung cancers, leading to aberrant
gene repression and contributing to tumor growth, metas-
tasis, and resistance to therapy (Ortiz et al., 2023; Yang
etal., 2019). KDM5A-N8 (PDB ID: 5ive) is designed to in-
hibit the enzymatic activity of KDM5A by targeting the
histone demethylase KDM5A (also known as JARID1A or
RBP2) (Horton et al., 2016). N8 inhibitor stops the removal
of methyl groups from H3K4 by blocking KDM5A. Given
the role of KDM5A in cancer, KDM5A-N8 has potential as a
therapeutic agent. Inhibiting KDM5A could reactivate tu-
mor suppressor genes and other critical regulatory genes
that are otherwise repressed in cancer cells.

Triazole compounds have shown significant potential
in cancer therapy due to their ability to inhibit critical
enzymes and disrupt cancer cell proliferation pathways
(Kumar et al., 2024; Avula et al., 2023). In particular, these
chemicals have been successful at targeting proteins that
play a role in epigenetic regulation, like histone demethy-
lases, which are important in the growth of many types
of cancer (Yang et al., 2019; Kumar et al., 2024). This
study investigates whether triazole-like molecules, when
docked to the KDM5A enzyme using molecular docking
techniques, can act as effective enzyme inhibitors. This
inhibition could disrupt KDM5A’s role in controlling epige-
netic modifications, thereby impeding cancer progression.

1.1. Molecular Docking State of the Art

Molecular docking has advanced significantly, becoming
a cornerstone technique in drug discovery and structural
biology. By 2023, the incorporation of artificial intelligence
(AI) and machine learning (ML) will have notably im-
proved the prediction accuracy of molecular interactions
(Corso et al., 2022). Modern docking tools like AutoDock
Vina and Glide have better scoring functions and more
adaptative docking protocols, considering solvent effects
and flexible proteins (Eberhardt et al., 2021; Friesner et al.,
2004). These tools have significantly increased the effi-
ciency of virtual screening processes, enabling the rapid
identification of potential drug candidates (Sliwoski et al.,
2014). The use of protein structure prediction tools such
as AlphaFold has provided high-quality templates that en-
hance docking studies (Jumper et al., 2021). This improve-
ment has made molecular docking more useful by letting
scientists look at targets that they could not before and
making it easier to find new binding and allosteric sites
(Senior et al., 2020). Such capabilities are crucial for the
development of targeted therapies and for understanding
complex biological systems.

The accuracy of docking predictions has also been
improved by combining molecular docking with high-
throughput experimental methods such as cryo-EM and
X-ray crystallography. These experiments give us detailed
information about the structures of molecules that, when
put together with computer docking, give us a full picture

of how molecules interact with each other. This synergy
has made it possible to study large and complex protein
assemblies, thus accelerating the drug discovery process
and improving the design and optimization of therapeutic
compounds (Gorgulla et al., 2020). Consequently, molec-
ular docking continues to be a powerful tool in modern
biomedical research, significantly contributing to the de-
velopment of new drugs and therapeutic strategies. In ad-
dition to advancements in molecular docking technology,
significant progress has been made in understanding spe-
cific molecular targets such as KDM5A (Lysine Demethy-
lase 5A). New research has focused on creating selective
inhibitors for KDM5A using cutting-edge docking meth-
ods to find out where it binds and how it works (Jose et al.,
2020).

Autodock Vina through Deepchem was used in this
study to check how well KDM5A binds to a set of tria-
zole derivatives chosen from a larger dataset; more details
about this are in Section 2. Research on KDM5A highlights
the critical role of molecular docking in modern drug dis-
covery, showcasing how computational tools can accel-
erate the identification and optimization of therapeutic
agents. Several studies are being made to treat cancers
that are linked to abnormal histone methylation using
state-of-the-art methods (Horton et al., 2016; Jose et al.,
2020). Even though the present study does not include ex-
perimental methods or technologies such as AlphaFold’s
structure prediction, we propose and expand more studies
in discussion in Section 3.

2. Materials and Methods

In molecular docking, both protein and ligand structures
are crucial to running a successful and reliable simulation.
To properly prepare a protein, structural errors must be
fixed, missing atoms must be added, and the right proto-
nation states must be assigned. These modifications are
necessary for a realistic representation of the binding site.
Ligands also need a preparation step, but before prepar-
ing the ligands, we selected triazole-like compounds from
the ligand dataset. Then, we prepared molecules by opti-
mizing the geometry, assigning the correct charges, and
ensuring that the tautomeric and ionization states were ac-
curate, which are crucial for correct interaction prediction.
When these files were prepared, molecular docking was
conducted safely. Figure 1 illustrates the main workflow
we used in this study.

2.1. Protein and Ligand Datasets

2.1.1. KDMB5A Co-Crystal Structure

KDM5A-linked Jumonji domain crystal structures are
available in Protein Data Bank databases (Horton et al.).
Figure 2 represents KDM5A-N8 (PDB ID: 5ive) which was
the target for molecular docking.
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Figure 1. Molecular docking workflow used in this study, including triazole-like selection of compound from the enamine premium dataset

Figure 2. Co-crystal structure of KDM5A and N8 inhibitor (PDB ID: 5ive)

2.1.2. Enamine Screening Collection

The enamine screening dataset comprises diverse chem-
ical compounds designed for virtual screening and drug
discovery purposes. We use the premium collection, a
subset of the screening collection, of 61,612 synthesized
compounds (Ltd2023). The premium enamine dataset has
compounds that have the best physical and chemical prop-
erties, such as Fsp3, low LogP, and low molecular weight
(about 350 g/mol on average).

2.2. Software requirements and dependencies

For the data preparation and docking simulations, we used
an Intel (R) Xeon (R) CPU @ 2.20 GHz with 2 vCPUs and 13
GB of RAM provided by Google Collaboratory (Colab) (Nel-
son and Hoover, 2020). As the main programming lan-
guage, we used Python 3.10.12 (Van Rossum and Drake Jr,
1995). OpenBabel and OpenMM libraries were used to re-
move N8 inhibitor heteroatoms present in the protein file.
Hydrogens were added, 3D conformers were made, and the
best geometry for ligands was found (Eastman et al., 2017,
O’Boyle et al., 2011). Docking simulations were conducted
using AutoDock Vina and Deepchem functions to man-
age file type conversions and define docking parameters
(Eberhardt et al., 2021; Ramsundar et al., 2019). Autodock
Vina uses an exhaustiveness parameter, which is directly
related to vCPU availability. For this reason, we set exhaus-
tiveness to two and generate 1 number of modes. These ar-
guments were passed directly to Deepchem’s VinaPoseGen-

erator object. In addition, RDKit was employed to select
triazole-like ligands and visualize the ligand’s structure
(RDKit, online).

2.3. Select triazole-like molecules

Triazoles are five-membered heterocyclic compounds con-
taining three nitrogen atoms and two carbon atoms. Tria-
zoles can exist in two isomeric forms, presented in Figure
3, 1,2,3-triazole, and 1,2,4-triazole, depending on the po-
sitions of the nitrogen atoms within the ring.

H

Figure 3. From right to left, 1, 2, 3-Triazole and 1, 2, 4-Triazole
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2.3.1. Molecular fingerprints

In RDKit, molecular fingerprints are typically binary vec-
tors that encode the presence or absence of particular
molecular substructures. In this study, we use Morgan
fingerprints in RDKit, which are a type of circular finger-
prints used to represent molecular structures (triazole in
this case) as binary vectors. Figure 4 represents triazole
fingerprints represented as molecular fragments. These
fingerprints capture the presence of circular substructures
centered around each atom within the molecule. For tria-
zole molecules, Morgan’s fingerprints would encode the
connectivity and surroundings of each atom in the ring.
By specifying a radius, the fingerprinting process con-
siders the atom and its neighbors up to that radius. We
set a radius of 2, which would account for the atom it-
self and its neighbors up to two bonds away. This method
records triazole’s structural features, which lets us make
a binary vector representation that can be used for many
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Figure 4. Triazole molecular fingerprints using Morgan fingerprints with
aradius of 2 units. In this case, indices 42, 80, 90, 346, 378, 609 650, 832,
and 849 are one value from the bit vector, which means the existence of a
molecular fragment

computer tasks, like finding similarities, clustering, and
studying the relationship between structure and activity.
The resulting binary vector highlights the specific circular
substructures present in triazole.

2.3.2. Tanimoto similarity

RDKit’s Tanimoto similarity is a metric used to compare
the similarity between two molecular fingerprints. The
Tanimoto similarity coefficient is calculated as the ratio of
the intersection to the union of the fingerprint sets:

C

Tanimoto similarity = ———
y a+b-c

(1)
where,

- ais the number of bits set to 1 in the first fingerprint,

- bis the number of bits set to 1in the second fingerprint,

- cis the number of bits set to 1 in both fingerprints (the
intersection).

The Tanimoto similarity ranges from o to 1, where 0 in-
dicates no similarity and 1 indicates identical fingerprints.
We set a cutoff of 0.1 for Tanimoto similarity to broaden
the docking search space.

2.4. Protein and Ligand Preparation Methodology

2.4.1. Protein Cleaning
The N8 inhibitor needs to be removed from the 5IVE file
to run an appropriate docking simulation. Also, we added

hydrogens at pH 7, including missing heavy atoms.

2.4.2. Ligand Preparation

Ligands from the enamine premium collection are shown
as 2D shapes, but to show how proteins interact with lig-
ands, 3D structures are needed. OpenBabel was used for
generating 3D conformers, adding missing hydrogens,
and minimizing the structure’s energy.

2.5. Visualization tools

NGLViewer was used to visualize the 3D molecular struc-
tures (i.e., KDM5A, ligands, and protein-ligand com-
plexes) (Rose et al.). RDKit was used to generate Sim-
plified Molecular Input Line Entry System (SMILES) and
kekulize structures for top-score ligands and Matplotlib
to plot scores distribution (Hunter, 2007).

3. Results and Discussion

As part of our virtual screening of triazole-like compounds,
we ran a blind docking simulation using the whole protein
structure for docking. From the enamine premium collec-
tion, 3.85% of the compounds were selected as triazole-
like compounds by applying molecular fingerprints and
comparing them with Tanimoto similarity. This means
that, setting a Tanimoto similarity of 10%, 2 411 ligands
were used for molecular docking simulations. However,
not all the ligands selected were triazole derivatives. Tani-
moto’s metric considers molecular fingerprints, some of
which are not unique to triazole compounds. This included
azoles, and cyclic compounds containing at least one ni-
trogen atom. Figure 5 presents a normal distribution of
Autodock Vina scores for binding poses, ranging from -
3.42 kcal/mol to the highest and lowest of -11.04 kcal/mol.

Histogram of Trizole-like Enamine Premium Ligands with 5IVE
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Figure 5. Histogram of triazole-like enamine premium ligands with 5ive
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Table 1. Autodock Vina scores, IC50 values and smile representations of top 40 triazole derivatives and doxorubicin binding poses .

Ligand No Autodock Vina Scores [%] IC50 [uM]  SMILES

700 —11.042 0.01 0=C(c1ccce2nenni2)N1CC2(CCCCC2)[C@@H 11ciccecct

91 -10.658 0.02 COci1ccc2cecc(CC(=0)N3CCn4e(nnes-c4ecencs)C3)c2cl

4L49 —10.261 0.03 0=C(Nc1cccec1Cnicnen1)N1CC2(CCC2)[C@H]1c1ccecct

284 -9.985 0.05 Cnicnnc1C[C@]1(0)CCCN(Ce2cec3c(c2)CCCC3)Cl

1021 -9.877 0.06 CC(C)cinnc2niC[C@@H](NC(=0)N1CCCn3c(ccscceccs3)C1)CC2
624 —0.847 0.06 Cnicnn(-c2ccc(NC(=0)N3CC4(CCC4L)[C@H]3c3cccec3)cc2)c1=0
344 -9.802 0.07 0=C(Nc1ccce(-n2cenn2)c1)N[C@H]1c2cceccc2CC12CCOCC2

1178 -9.735 0.07 Ccinne2niC[C@@HI(C(N)=0)N(C(=0)Cc1cce3e(c1)CCC3)C2

785 —9.554 0.1 0=C(NCc1innc(-c2ccnec2)[nH]1)N1CC2(CCCC2)c2ccce(F)c21

65 —0.543 0.1 Ccinne([C@H]20CC[C@H]2CNC(=0)c2ccec3ce(C)e(C)[nH]c23)[nH]1
1322 -9.527 0.1 0=C(c1cce(Oc2cccce2)en1)N1CCn2c(nnc2-c2ccenc2)Cl

1164, —9.436 0.12 Ccinne2niC[C@@H](C(N)=0)N(C(=0)c1cce3e(c1)CCC=C3)C2

823 -9.359 0.14 CC(C)nincncINC(=0)N1C[C@H](c2ccece2)[C@H]2COCC[C@@H]21
1441 -9.218 0.17 0=C(cien([C@@H]2COC[C@H]20)nn1)N1CCc2ccecc2Cl

1323 -9.197 0.18 Ccinnc([C@H]20CC[C@H]2CNC(=0)Cc2c(C)[nH]c3ccecc23)[(nH]1
44,2 -9.171 0.19 0=S(=0)(Ccinnc2n1CCCCC2)cinc(-c2ccc3c(c2)CCC3)n[nH]1

1008 —0.049 0.23 Cnicnnc1C[C@]1(0)CCCN(c2nc3cecec3cc2CO)Cl

776 -8.982 0.26 CCclcce([C@@H]2CN(c3cc4nnense(C)n3)CCO2)cct

290 -8.972 0.26 CCn1incnciCNC(=0)N1C[C@H](c2cccec2)[C@H]2COCC[C@@H]21
1077 -8.956 0.27 Ccinne([C@H]20CC[C@H]2CNc2nc3c¢(cc2CN)CCCC3)[(nH]1

152 -8.926 0.29 CO[C@@H1C[C@@H](c2nnc3n2CCC3)N(Cc2ccc3ceceec3n2)Cl
1475 -8.917 0.29 Cc1ce(F)cc2c1CN(C(=0)cien([C@@H]13COC[C@H]30)nn1)CC2
1158 -8.905 0.3 Ccicce(C(=0)N2Cc3nnc(C)n3C[C@H]2C(N)=0)c2c1CCC2

752 —8.886 0.31 CCninncc1C(=0)N1CC2(CCCC2)c2ccce(Cl)c21

701 —8.885 0.31 0=C(c1cccn2c(=0)[nH]nc12)N1CC2(CCCCC2)[C@@H]1c1cceect
1070 -8.867 0.32 0=C(N[C@@H]1c2ccccc2C[C@@H]10)cinc2n(n1)CCCN2

1162 —8.865 0.32 Ccinnc2niC[C@@H](C(N)=0)N(C(=0)c1cccc(C3CCC3)c1)C2

222 -8.833 0.33 Cnicc([C@@H]2CS(=0)(=0)CCN2Cc2ncnn2-c2cccec2)enl

2361 -8.807 0.35 Cc1c(C(=0)N(C)C[C@H]20CC[C@H]2c2ncn[nH]2)oc2cccec12
1069 —-8.798 0.36 0=C(N[C@@H]1c2ccccc2C[C@@H]10)cinc2n(n1)CCCN2

164, -8.793 0.36 CO[C@@H1C[C@@H](c2nnc3n2CCC3)N(C(=0)Cc2cc(C)ccc2C)Cl
352 -8.775 0.37 Ccinc2n(n1)C[C@@H](NC(=0)N1CCC(c3nocscc(F)cee34)CC1)CC2
787 -8.767 0.37 Ccice(F)ccc1C1CCN(C(=0)NCcz2nne(-c3cencc3)[nH]2)CC1

1016 —8.765 0.38 Cn1icnnc1C[C@]1(0)CCCN(Cc2ccc3ocec3c2)Cl

1483 -8.751 0.38 0=C(cicn([C@@H]2COC[C@H]20)nn1)N1Cc2ccec(Cl)c2C1

1474 —8.724, 0.4 Ccicc(F)cc2c1CN(C(=0)c1en([C@@H]3COC[C@H]30)nn1)CC2

73 —8.6095 0.42 Cnic([C@@H]2Cc3cccec302)nnciNICC[C@@]2(CNC(=0)C2)C1
1791 —8.684 0.43 CO[C@@HI]1C[C@H](c2nce[nH]2)N(C(=0)c2cccc(-c3ncn[nH]3)c2)C1
738 -8.678 0.43 CCC1(c2ceecc2)CN(C(=0)Nczcee(-n3cenn3)cc2)Cl

1013 -8.677 0.44 Cn1cnnec1C[C@]1(0)CCCN(Cec2cec3ce(c2)CCO3)CL

2355 -8.671 0.44 Ccicce2[nH]c(C(=0)N(C)C[C@H]30CC[C@H]3c3ncn[nH]3)cc2c1C
Doxorubicin -7.59 2.72 Cc1[nH]c2c(CN)cnn2c(=0)c1C(C)C

In the scope of this study, the lowest triazole derivative
molecules were selected after performing molecular dock-
ing. Also, we include doxorubicin, which is an approved
drug targeting breast cancer, in docking simulations as
a control experiment. Table 1 showcases the lowest es-
timated binding free energies, IC50 values, and SMILES
representations. Doxorubicin results are similar to reports
from relative studies (Elmorsy et al., 2023; Avula et al.,
2023).

AutoDock Vina predicts bound conformations and
scores that indicate binding affinity. NGL Viewer was
used to create three-dimensional visualizations to ana-
lyze and illustrate the interactions between the KDM5A
protein residues ligand 700, presented in Figure 6. In
the predicted conformation, the binding pocket of 700
included three key residues: Cys481, Tyr472, and Lys501.
In particular, forming hydrogen bonds with Lys501 and

Cys481 and pi-bond with Tyr472. According to AutoDock
Vina scores in Table 1, ligand 700, with a score of —11.042
kcal/mol, was the most potent compound. Ligands 91,
449, 284, 1021, 624, and 344 had scores of —10.658
kcal/mol, —10.261 kcal/mol, —9.985 kcal/mol, —9.877
kcal/mol, —9.847 kcal/mol, and —9.802 kcal/mol, respec-
tively (Table 1). The lower AutoDock Vina scores for lig-
ands 700, 91, and 449 prompted the synthesis of these
compounds for further biological evaluation. The triazole
derivative compounds in Table 1 bind to the active site in
the KDM5A-N8 co-crystal structure in a way that is similar
to what was seen before. Figure 7 shows triazole derivative
structures for 700, 91, and 449.

Even though these results are not conclusive enough
to claim new chemotherapeutic agents, Autodock Vina
scores of 700, 91, and 449 suggest a strong affinity to in-
hibit KDM5A. In terms of molecular docking computation
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Figure 6. 3D binding pose between 700 and 5ive’s active site, including
interatomic interactions

A) B)

Figure 7. Top scoring triazole derivative compounds after molecular dock-
ing simulations. A) 700, B) 91, C) 449

requirements, increasing virtual CPUs and exhaustiveness
can lead to new binding conformations. We recommend
synthesizing these compounds and conducting additional
experimental analyses such as apoptosis assays, MTT as-
says, ADME studies, X-ray crystallography, and Cryo-EM
to evaluate their medicinal properties since these com-
pounds possess the potential to be better candidates that
exhibit promising IC50 profiles for further study. This de-
tailed structural information from the docking study helps
in designing or modifying compounds with better affinity
and selectivity in the future. Also, it would be interesting
to apply structure prediction strategies such as alphafold
and target new structures.

4. Conclusions

We chose 2,411 triazole-like ligands from the Enamine Pre-
mium database, which has 62,612 compounds. Then, we
used Autodock Vina and Deepchem software to do molec-
ular docking simulations against KDM5A (PDB ID: 5ive).
Among these newly identified inhibitor candidates, com-
pounds 700, 91, and 449 exhibited the lowest Autodock
Vina scores (< -10 kcal/mol). Compound 700 displayed
the lowest score at -11.042 kcal/mol, with an estimated
IC50 value of approximately 0.01 uM. Triazoles 91 and 449
demonstrated comparable IC50 values of 0.02 and 0.03
uM, respectively. Notably, the docking score of the well-
established agent doxorubicin was in agreement with its
IC50 experimental value, with a score of -7.59 kcal/mol
and an IC50 value of 2.72 uM. The binding energy score
of the triazole derivatives, which resulted from hydrogen
bonds and n—H interactions with the protein residues, fol-
lowed the order of 700 < 91 < 449, with scores of -11.042,
-10.658, and -10.261, respectively. Finally, the top triazole
derivatives (700, 91, and 449) presented low IC50 values,
making them potential therapeutic agents, but further
analysis, such as experimental methods and the applica-
tion of state-of-the-art methods, should be addressed in
future studies.

5. Funding

This research did not receive any specific grant from fund-
ing agencies in the public, commercial, or not-for-profit
sectors.

6. Acknowledgements

We want to thank the CIDNA from Escuela Superior Politéc-
nica del Litoral (ESPOL), for the support during the re-
search process.

References

Avula, S. K., Rehman, N. U, Khan, F., Ullah, O., Halim,
S.A., Khan, A., Anwar, M. U,, Rahman, S. M, Csuk, R.,
and Al-Harrasi, A. (2023). Triazole-tethered boswellic
acid derivatives against breast cancer: Synthesis, in
vitro, and in-silico studies. Journal of Molecular Structure,
1282:135181.

Corso, G., Stark, H., Jing, B., Barzilay, R., and Jaakkola, T.
(2022). DiffDock: Diffusion Steps, Twists, and Turns
for Molecular Docking. (Figure 1):1—33.

Eastman, P., Swalils, J., Chodera, J. D., Mcgibbon, R. T.,
Zhao, Y., Beauchamp, K. A., Wang, L.-p., Simmonett,
A. C., Harrigan, M. P, Stern, C. D., Wiewiora, R. P,,
Brooks, B. R., and Pande, V. S. (2017). OpenMM 7 : Rapid
development of high performance algorithms for molec-
ular dynamics. pages 1—17.

Eberhardt, J., Santos-Martins, D., Tillack, A. F., and Forli,
S. (2021). AutoDock Vina 1.2.0: New Docking Methods,



Expanded Force Field, and Python Bindings. Journal of
Chemical Information and Modeling, 61(8):3891—3898.

Elmorsy, M. R., Abdel-Latif, E., Gaffer, H. E., Mahmoud,
S.E.,and Fadda, A. A. (2023). Anticancer evaluation and
molecular docking of new pyridopyrazolo-triazine and
pyridopyrazolo-triazole derivatives. Scientific Reports,
13(1):1-17.

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A,
Klicic, J.J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shel-
ley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin,
P. S. (2004). Glide: A New Approach for Rapid, Accu-
rate Docking and Scoring. 1. Method and Assessment
of Docking Accuracy. Journal of Medicinal Chemistry,
47(7):1739-1749.

Gorgulla, C., Boeszoermenyi, A., Wang, Z. F., Fischer,
P. D,, Coote, P. W., Padmanabha Das, K. M., Malets,
Y. S., Radchenko, D. S., Moroz, Y. S., Scott, D. A., Fack-
eldey, K., Hoffmann, M., Iavniuk, 1., Wagner, G., and
Arthanari, H. (2020). An open-source drug discovery
platform enables ultra-large virtual screens. Nature,
580(7805):663—668.

Horton, J. R., Liu, X., Gale, M., Wu, L., Shanks, J. R., Zhang,
X., Webber, P.]., Bell, J. S., Kales, S. C., Mott, B. T., Rai,
G., Jansen, D. J., Henderson, M. J., Urban, D. J., Hall,
M. D., Simeonov, A., Maloney, D.J., Johns, M. A, Fu, H.,
Jadhav, A., Vertino, P. M., Yan, Q., and Cheng, X. RCSB
PDB - 5IVE: Linked KDM5A Jmj Domain Bound to the
Inhibitor N8 ( 5-methyl-7-0x0-6-(propan-2-yl)-4,7-
dihydropyrazolo[1,5-alpyrimidine-3-carbonitrile).
Available from https://www.rcsb.org/structure/5ive.

Horton, J. R., Liu, X., Gale, M., Wu, L., Shanks, J. R., Zhang,
X., Webber, P.]., Bell, J. S., Kales, S. C., Mott, B. T., Rai, G.,
Jansen, D. J., Henderson, M. J., Urban, D. J., Hall, M. D.,
Simeonov, A., Maloney, D. J., Johns, M. A, Fu, H., Jad-
hav, A., Vertino, P. M., Yan, Q., and Cheng, X. (2016).
Structural Basis for KDM5A Histone Lysine Demethy-
lase Inhibition by Diverse Compounds. Cell Chemical
Biology, 23(7):769—781.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering, 9(3):90—95.

Jose, A., Shenoy, G. G., Rodrigues, G. S., Kumar, N. A., Mu-
nisamy, M., Thomas, L., Kolesar, J., Rai, G., Rao, P. P,,
and Rao, M. (2020). Histone demethylase KDM5B as a
therapeutic target for cancer therapy. Cancers, 12(8):1—
16.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, 0., Tunyasuvunakool, K., Bates, R., Zidek,
A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A.,
Ballard, A. ]., Cowie, A., Romera-Paredes, B., Nikolov,
S.,Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D.,
Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M.,
Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O.,
Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis,
D. (2021). Highly accurate protein structure prediction
with AlphaFold. Nature, 596(7873):583—589.

Jurutka, P. W., Di Martino, O., Reshi, S., Mallick, S.,
Sabir, Z. L., Staniszewski, L. J., Warda, A., Maiorella,

Jose Siguenzaetal. | 7

E. L., Minasian, A., Davidson, J., Ibrahim, S. J., Raban,
S., Haddad, D., Khamisi, M., Suban, S. L., Dawson,
B. J., Candia, R., Ziller, J. W., Lee, M. Y., Liu, C., Liu,
W., Marshall, P. A., Welch, J. S., and Wagner, C. E.
(2021). Modeling, synthesis and biological evalua-
tion of potential retinoid-x-receptor (Rxr) selective
agonists: Analogs of 4-[1-(3,5,5,8,8-pentamethyl-
5,6,7,8-tetrahyro-2-naphthyl)ethynyl Jbenzoic

acid (bexarotene) and 6-(ethyl(4- isobutoxy-3-
isopropylphenyl)amino)nicotinic acid (net-4ib).
International Journal of Molecular Sciences, 22(22).

Kumar, G., Kumar, P., Soni, A., Sharma, V., and Nemi-
wal, M. (2024). Efficient synthesis and molecular dock-
ing analysis of quinazoline and azole hybrid deriva-
tives as promising agents for anti-cancer and anti-
tuberculosis activities. Journal of Molecular Structure,
1310(April):138289.

Li, C.-Y., Wang, W,, Leung, C.-H., Yang, G.-]., and Chen,
J. (2024). KDM5 family as therapeutic targets in breast
cancer: Pathogenesis and therapeutic opportunities and
challenges. Molecular Cancer, 23(1):1009.

Ltd2023, E. Screening Collections - Enamine. Available
from https://enamine.net/compound-collections/
screening-collection.

Nelson, M. J. and Hoover, A. K. (2020). Notes on Using
Google Colaboratory in Al Education. Annual Confer-
ence on Innovation and Technology in Computer Science
Education, ITiCSE, pages 533—534.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vander-
meersch, T., and Hutchison, G. R. (2011). Open Babel.
Journal of Cheminformatics, 3(33):1—14.

Ortiz, G., Longbotham, J. E., Qin, S. L., Zhang, M. Y., Lee,
G. M., Neitz, R.]., Kelly, M. J., Arkin, M. R., and Fujimori,
D. G. (2023). Identifying ligands for the PHD1 finger
of KDM5A through high-throughput screening. RSC
Chemical Biology, 5(3):209—215.

Ramsundar, B., Eastman, P., Walters, P.,, Pande, V.,
Leswing, K., and Wu, Z. (2019). Deep Learning for
the Life Sciences. O’Reilly Media. https://www.amazon.
com/Deep-Learning-Life-Sciences-Microscopy/dp/
1492039837.

RDKit, online. RDKit: Open-source cheminformat-
ics. http://www.rdkit.org. [Online; accessed 11-April-
2013].

Rose, A. S., Bradley, A. R., Valasatava, Y., Duarte, J. M., Prlic,
A., and Rose, P. W. NGL viewer: Web-based molecular
graphics for large complexes. Bioinformatics, (21):3755—
3758.

Schmitt, M. and Greten, F. R. The inflammatory patho-
genesis. Nature Reviews Immunology, 0123456789.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L.,
Green, T., Qin, C., Zidek, A., Nelson, A. W., Bridgland,
A., Penedones, H., Petersen, S., Simonyan, K., Crossan,
S., Kohli, P, Jones, D. T., Silver, D., Kavukcuogluy, K.,
and Hassabis, D. (2020). Improved protein structure
prediction using potentials from deep learning. Nature,
577(7792):706—710.


https://www.rcsb.org/structure/5ive
https://enamine.net/compound-collections/screening-collection
https://enamine.net/compound-collections/screening-collection
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
http://www.rdkit.org

8 | 13t International Workshop on Innovative Simulation for Healthcare, IWISH 2024

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W.
(2014). Computational methods in drug discovery. Phar-
macological Reviews, 66(1):334—395.

Van Rossum, G. and Drake Jr, F. L. (1995). Python tutorial.
Centrum voor Wiskunde en Informatica Amsterdam,
The Netherlands.

Yang, G.J., Ko, C.N., Zhong, H.]J., Leung, C. H., and Ma, D. L.
(2019). Structure-based discovery of a selective KDM5A
inhibitor that exhibits anti-cancer activity via inducing
cell cycle arrest and senescence in breast cancer cell
lines. Cancers, 11(1):1—15.



	Introduction
	Molecular Docking State of the Art

	Materials and Methods
	Protein and Ligand Datasets
	KDM5A Co-Crystal Structure
	Enamine Screening Collection

	Software requirements and dependencies
	Select triazole-like molecules
	Molecular fingerprints
	Tanimoto similarity

	Protein and Ligand Preparation Methodology
	Protein Cleaning
	Ligand Preparation

	Visualization tools

	Results and Discussion
	Conclusions
	Funding
	Acknowledgements

