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Abstract
KDM5A, implicated in diverse cancer types, including breast cancer, serves as a crucial regulator of tumor progression, metastasis, anddrug resistance. As a histone demethylase, targeting KDM5A presents a promising therapeutic strategy. We used a library of 61,612compounds, some of which were triazole-like ligands, to generate binding poses targeting the KDM5A catalytic pocket. Differentchemoinformatic and bioinformatic techniques were used, such as molecular fingerprints, Tanimoto similarity, and Autodock Vinathrough Deepchem. Triazole derivatives 700, 91, and 449 were the best at inhibiting KDM5A demethylase activity. It was found thatcompound 700 had a stronger binding affinity for KDM5A and lower IC50 values, at -11.042 kcal/mol and 0.01 M, compared todoxorubicin, a well-known breast cancer inhibitor. Furthermore, triazole compounds 91 and 499 demonstrated promising potential asKDM5A inhibitors. This study of triazole-like molecules for virtual screening suggests a workflow to identify triazole derivative drugsthat are selective for KDM5A-type cancer.
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1. Introduction

An increase in genetic changes that interfere with regularcellular functions and control systems, resulting in abnor-mal and varied cell growth, is what leads to the develop-ment of cancer (Elmorsy et al., 2023). Cancer can be causedby various factors, such as genetics, environmental expo-sures, and molecular-level changes (Schmitt and Greten).This complexity makes it challenging to understand themechanisms of cancer and develop targeted treatments.Molecular docking has emerged as a computer-based tech-nique facilitating the identification and optimization ofpotential therapeutic agents (Eberhardt et al., 2021; Fries-ner et al., 2004). As discussed in numerous studies, molec-ular docking is effective in predicting the binding affin-

ity and orientation of small molecules to target proteins(Yang et al., 2019; Li et al., 2024). Molecular docking andhigh-throughput screening have made it faster to findnew drugs that stop proteins like kinases, proteases, andreceptor tyrosine kinases that cause cancer (Jurutka et al.,2021).
It is an enzyme that is part of a group of histonedemethylases called Jumonji C (JmjC) (Jose et al., 2020). Itis also known as Lysine Demethylase 5A or JARID1A. Thisenzyme removes tri- and di-methylated lysine 4 from hi-stone H3 (H3K4me3 and H3K4me2) (Horton et al., 2016).Since this change is usually linked to active gene transcrip-tion, KDM5A is very important for controlling gene expres-sion because it removes these activating marks and helpsstop transcription. By demethylating H3K4me3/2, KDM5A

1

https://creativecommons.org/licenses/by-nc-nd/4.0/.


2 | 13th International Workshop on Innovative Simulation for Healthcare, IWISH 2024

acts to repress the transcription of various genes. KDM5Ais often overexpressed in several types of cancer, includ-ing breast, prostate, and lung cancers, leading to aberrantgene repression and contributing to tumor growth, metas-tasis, and resistance to therapy (Ortiz et al., 2023; Yanget al., 2019). KDM5A-N8 (PDB ID: 5ive) is designed to in-hibit the enzymatic activity of KDM5A by targeting thehistone demethylase KDM5A (also known as JARID1A orRBP2) (Horton et al., 2016). N8 inhibitor stops the removalof methyl groups from H3K4 by blocking KDM5A. Giventhe role of KDM5A in cancer, KDM5A-N8 has potential as atherapeutic agent. Inhibiting KDM5A could reactivate tu-mor suppressor genes and other critical regulatory genesthat are otherwise repressed in cancer cells.
Triazole compounds have shown significant potentialin cancer therapy due to their ability to inhibit criticalenzymes and disrupt cancer cell proliferation pathways(Kumar et al., 2024; Avula et al., 2023). In particular, thesechemicals have been successful at targeting proteins thatplay a role in epigenetic regulation, like histone demethy-lases, which are important in the growth of many typesof cancer (Yang et al., 2019; Kumar et al., 2024). Thisstudy investigates whether triazole-like molecules, whendocked to the KDM5A enzyme using molecular dockingtechniques, can act as effective enzyme inhibitors. Thisinhibition could disrupt KDM5A’s role in controlling epige-netic modifications, thereby impeding cancer progression.

1.1. Molecular Docking State of the Art

Molecular docking has advanced significantly, becominga cornerstone technique in drug discovery and structuralbiology. By 2023, the incorporation of artificial intelligence(AI) and machine learning (ML) will have notably im-proved the prediction accuracy of molecular interactions(Corso et al., 2022). Modern docking tools like AutoDockVina and Glide have better scoring functions and moreadaptative docking protocols, considering solvent effectsand flexible proteins (Eberhardt et al., 2021; Friesner et al.,2004). These tools have significantly increased the effi-ciency of virtual screening processes, enabling the rapididentification of potential drug candidates (Sliwoski et al.,2014). The use of protein structure prediction tools suchas AlphaFold has provided high-quality templates that en-hance docking studies (Jumper et al., 2021). This improve-ment has made molecular docking more useful by lettingscientists look at targets that they could not before andmaking it easier to find new binding and allosteric sites(Senior et al., 2020). Such capabilities are crucial for thedevelopment of targeted therapies and for understandingcomplex biological systems.
The accuracy of docking predictions has also beenimproved by combining molecular docking with high-throughput experimental methods such as cryo-EM andX-ray crystallography. These experiments give us detailedinformation about the structures of molecules that, whenput together with computer docking, give us a full picture

of how molecules interact with each other. This synergyhas made it possible to study large and complex proteinassemblies, thus accelerating the drug discovery processand improving the design and optimization of therapeuticcompounds (Gorgulla et al., 2020). Consequently, molec-ular docking continues to be a powerful tool in modernbiomedical research, significantly contributing to the de-velopment of new drugs and therapeutic strategies. In ad-dition to advancements in molecular docking technology,significant progress has been made in understanding spe-cific molecular targets such as KDM5A (Lysine Demethy-lase 5A). New research has focused on creating selectiveinhibitors for KDM5A using cutting-edge docking meth-ods to find out where it binds and how it works (Jose et al.,2020).
Autodock Vina through Deepchem was used in thisstudy to check how well KDM5A binds to a set of tria-zole derivatives chosen from a larger dataset; more detailsabout this are in Section 2. Research on KDM5A highlightsthe critical role of molecular docking in modern drug dis-covery, showcasing how computational tools can accel-erate the identification and optimization of therapeuticagents. Several studies are being made to treat cancersthat are linked to abnormal histone methylation usingstate-of-the-art methods (Horton et al., 2016; Jose et al.,2020). Even though the present study does not include ex-perimental methods or technologies such as AlphaFold’sstructure prediction, we propose and expand more studiesin discussion in Section 3.

2. Materials andMethods

In molecular docking, both protein and ligand structuresare crucial to running a successful and reliable simulation.To properly prepare a protein, structural errors must befixed, missing atoms must be added, and the right proto-nation states must be assigned. These modifications arenecessary for a realistic representation of the binding site.Ligands also need a preparation step, but before prepar-ing the ligands, we selected triazole-like compounds fromthe ligand dataset. Then, we prepared molecules by opti-mizing the geometry, assigning the correct charges, andensuring that the tautomeric and ionization states were ac-curate, which are crucial for correct interaction prediction.When these files were prepared, molecular docking wasconducted safely. Figure 1 illustrates the main workflowwe used in this study.
2.1. Protein and Ligand Datasets

2.1.1. KDM5A Co-Crystal Structure
KDM5A-linked Jumonji domain crystal structures areavailable in Protein Data Bank databases (Horton et al.).Figure 2 represents KDM5A-N8 (PDB ID: 5ive) which wasthe target for molecular docking.
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Figure 1. Molecular docking workflow used in this study, including triazole-like selection of compound from the enamine premium dataset

Figure 2. Co-crystal structure of KDM5A and N8 inhibitor (PDB ID: 5ive)

2.1.2. Enamine Screening CollectionThe enamine screening dataset comprises diverse chem-ical compounds designed for virtual screening and drugdiscovery purposes. We use the premium collection, asubset of the screening collection, of 61,612 synthesizedcompounds (Ltd2023). The premium enamine dataset hascompounds that have the best physical and chemical prop-erties, such as Fsp3, low LogP, and low molecular weight(about 350 g/mol on average).
2.2. Software requirements and dependencies

For the data preparation and docking simulations, we usedan Intel (R) Xeon (R) CPU @ 2.20 GHz with 2 vCPUs and 13GB of RAM provided by Google Collaboratory (Colab) (Nel-son and Hoover, 2020). As the main programming lan-guage, we used Python 3.10.12 (Van Rossum and Drake Jr,1995). OpenBabel and OpenMM libraries were used to re-move N8 inhibitor heteroatoms present in the protein file.Hydrogens were added, 3D conformers were made, and thebest geometry for ligands was found (Eastman et al., 2017;O’Boyle et al., 2011). Docking simulations were conductedusing AutoDock Vina and Deepchem functions to man-age file type conversions and define docking parameters(Eberhardt et al., 2021; Ramsundar et al., 2019). AutodockVina uses an exhaustiveness parameter, which is directlyrelated to vCPU availability. For this reason, we set exhaus-tiveness to two and generate 1 number of modes. These ar-guments were passed directly to Deepchem’s VinaPoseGen-

erator object. In addition, RDKit was employed to selecttriazole-like ligands and visualize the ligand’s structure(RDKit, online).
2.3. Select triazole-like molecules

Triazoles are five-membered heterocyclic compounds con-taining three nitrogen atoms and two carbon atoms. Tria-zoles can exist in two isomeric forms, presented in Figure3, 1,2,3-triazole, and 1,2,4-triazole, depending on the po-sitions of the nitrogen atoms within the ring.

Figure 3. From right to left, 1, 2, 3-Triazole and 1, 2, 4-Triazole

2.3.1. Molecular fingerprints
In RDKit, molecular fingerprints are typically binary vec-tors that encode the presence or absence of particularmolecular substructures. In this study, we use Morganfingerprints in RDKit, which are a type of circular finger-prints used to represent molecular structures (triazole inthis case) as binary vectors. Figure 4 represents triazolefingerprints represented as molecular fragments. Thesefingerprints capture the presence of circular substructurescentered around each atom within the molecule. For tria-zole molecules, Morgan’s fingerprints would encode theconnectivity and surroundings of each atom in the ring.By specifying a radius, the fingerprinting process con-siders the atom and its neighbors up to that radius. Weset a radius of 2, which would account for the atom it-self and its neighbors up to two bonds away. This methodrecords triazole’s structural features, which lets us makea binary vector representation that can be used for many
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Figure 4. Triazole molecular fingerprints using Morgan fingerprints witha radius of 2 units. In this case, indices 42, 80, 90, 346, 378, 609 650, 832,and 849 are one value from the bit vector, which means the existence of amolecular fragment

computer tasks, like finding similarities, clustering, andstudying the relationship between structure and activity.The resulting binary vector highlights the specific circularsubstructures present in triazole.
2.3.2. Tanimoto similarityRDKit’s Tanimoto similarity is a metric used to comparethe similarity between two molecular fingerprints. TheTanimoto similarity coefficient is calculated as the ratio ofthe intersection to the union of the fingerprint sets:

Tanimoto similarity = c
a + b – c (1)

where,
• a is the number of bits set to 1 in the first fingerprint,• b is the number of bits set to 1 in the second fingerprint,• c is the number of bits set to 1 in both fingerprints (theintersection).

The Tanimoto similarity ranges from 0 to 1, where 0 in-dicates no similarity and 1 indicates identical fingerprints.We set a cutoff of 0.1 for Tanimoto similarity to broadenthe docking search space.
2.4. Protein and Ligand PreparationMethodology

2.4.1. Protein CleaningThe N8 inhibitor needs to be removed from the 5IVE fileto run an appropriate docking simulation. Also, we added

hydrogens at pH 7, including missing heavy atoms.
2.4.2. Ligand PreparationLigands from the enamine premium collection are shownas 2D shapes, but to show how proteins interact with lig-ands, 3D structures are needed. OpenBabel was used forgenerating 3D conformers, adding missing hydrogens,and minimizing the structure’s energy.
2.5. Visualization tools

NGLViewer was used to visualize the 3D molecular struc-tures (i.e., KDM5A, ligands, and protein-ligand com-plexes) (Rose et al.). RDKit was used to generate Sim-plified Molecular Input Line Entry System (SMILES) andkekulize structures for top-score ligands and Matplotlibto plot scores distribution (Hunter, 2007).
3. Results and Discussion

As part of our virtual screening of triazole-like compounds,we ran a blind docking simulation using the whole proteinstructure for docking. From the enamine premium collec-tion, 3.85% of the compounds were selected as triazole-like compounds by applying molecular fingerprints andcomparing them with Tanimoto similarity. This meansthat, setting a Tanimoto similarity of 10%, 2 411 ligandswere used for molecular docking simulations. However,not all the ligands selected were triazole derivatives. Tani-moto’s metric considers molecular fingerprints, some ofwhich are not unique to triazole compounds. This includedazoles, and cyclic compounds containing at least one ni-trogen atom. Figure 5 presents a normal distribution ofAutodock Vina scores for binding poses, ranging from -3.42 kcal/mol to the highest and lowest of -11.04 kcal/mol.

Figure 5. Histogram of triazole-like enamine premium ligands with 5ive
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Table 1. Autodock Vina scores, IC50 values and smile representations of top 40 triazole derivatives and doxorubicin binding poses .
Ligand No Autodock Vina Scores [ kcal

mol

] IC50 [µM] SMILES
700 –11.042 0.01 O=C(c1cccc2ncnn12)N1CC2(CCCCC2)[C@@H]1c1ccccc191 –10.658 0.02 COc1ccc2cccc(CC(=O)N3CCn4c(nnc4-c4cccnc4)C3)c2c1449 –10.261 0.03 O=C(Nc1ccccc1Cn1cncn1)N1CC2(CCC2)[C@H]1c1ccccc1284 –9.985 0.05 Cn1cnnc1C[C@]1(O)CCCN(Cc2ccc3c(c2)CCCC3)C11021 –9.877 0.06 CC(C)c1nnc2n1C[C@@H](NC(=O)N1CCCn3c(cc4ccccc43)C1)CC2624 –9.847 0.06 Cn1cnn(-c2ccc(NC(=O)N3CC4(CCC4)[C@H]3c3ccccc3)cc2)c1=O344 –9.802 0.07 O=C(Nc1cccc(-n2ccnn2)c1)N[C@H]1c2ccccc2CC12CCOCC21178 –9.735 0.07 Cc1nnc2n1C[C@@H](C(N)=O)N(C(=O)Cc1ccc3c(c1)CCC3)C2785 –9.554 0.1 O=C(NCc1nnc(-c2ccncc2)[nH]1)N1CC2(CCCC2)c2cccc(F)c2165 –9.543 0.1 Cc1nnc([C@H]2OCC[C@H]2CNC(=O)c2cccc3c(C)c(C)[nH]c23)[nH]11322 –9.527 0.1 O=C(c1ccc(Oc2ccccc2)cn1)N1CCn2c(nnc2-c2cccnc2)C11164 –9.436 0.12 Cc1nnc2n1C[C@@H](C(N)=O)N(C(=O)c1ccc3c(c1)CCC=C3)C2823 –9.359 0.14 CC(C)n1ncnc1NC(=O)N1C[C@H](c2ccccc2)[C@H]2COCC[C@@H]211441 –9.218 0.17 O=C(c1cn([C@@H]2COC[C@H]2O)nn1)N1CCc2ccccc2C11323 –9.197 0.18 Cc1nnc([C@H]2OCC[C@H]2CNC(=O)Cc2c(C)[nH]c3ccccc23)[nH]1442 –9.171 0.19 O=S(=O)(Cc1nnc2n1CCCCC2)c1nc(-c2ccc3c(c2)CCC3)n[nH]11008 –9.049 0.23 Cn1cnnc1C[C@]1(O)CCCN(c2nc3ccccc3cc2CO)C1776 –8.982 0.26 CCc1ccc([C@@H]2CN(c3cc4nncn4c(C)n3)CCO2)cc1290 –8.972 0.26 CCn1ncnc1CNC(=O)N1C[C@H](c2ccccc2)[C@H]2COCC[C@@H]211077 –8.956 0.27 Cc1nnc([C@H]2OCC[C@H]2CNc2nc3c(cc2CN)CCCC3)[nH]1152 –8.926 0.29 CO[C@@H]1C[C@@H](c2nnc3n2CCC3)N(Cc2ccc3ccccc3n2)C11475 –8.917 0.29 Cc1cc(F)cc2c1CN(C(=O)c1cn([C@@H]3COC[C@H]3O)nn1)CC21158 –8.905 0.3 Cc1ccc(C(=O)N2Cc3nnc(C)n3C[C@H]2C(N)=O)c2c1CCC2752 –8.886 0.31 CCn1nncc1C(=O)N1CC2(CCCC2)c2cccc(Cl)c21701 –8.885 0.31 O=C(c1cccn2c(=O)[nH]nc12)N1CC2(CCCCC2)[C@@H]1c1ccccc11070 –8.867 0.32 O=C(N[C@@H]1c2ccccc2C[C@@H]1O)c1nc2n(n1)CCCN21162 –8.865 0.32 Cc1nnc2n1C[C@@H](C(N)=O)N(C(=O)c1cccc(C3CCC3)c1)C2222 –8.833 0.33 Cn1cc([C@@H]2CS(=O)(=O)CCN2Cc2ncnn2-c2ccccc2)cn12361 –8.807 0.35 Cc1c(C(=O)N(C)C[C@H]2OCC[C@H]2c2ncn[nH]2)oc2ccccc121069 –8.798 0.36 O=C(N[C@@H]1c2ccccc2C[C@@H]1O)c1nc2n(n1)CCCN2164 –8.793 0.36 CO[C@@H]1C[C@@H](c2nnc3n2CCC3)N(C(=O)Cc2cc(C)ccc2C)C1352 –8.775 0.37 Cc1nc2n(n1)C[C@@H](NC(=O)N1CCC(c3noc4cc(F)ccc34)CC1)CC2787 –8.767 0.37 Cc1cc(F)ccc1C1CCN(C(=O)NCc2nnc(-c3ccncc3)[nH]2)CC11016 –8.765 0.38 Cn1cnnc1C[C@]1(O)CCCN(Cc2ccc3occc3c2)C11483 –8.751 0.38 O=C(c1cn([C@@H]2COC[C@H]2O)nn1)N1Cc2cccc(Cl)c2C11474 –8.724 0.4 Cc1cc(F)cc2c1CN(C(=O)c1cn([C@@H]3COC[C@H]3O)nn1)CC273 –8.695 0.42 Cn1c([C@@H]2Cc3ccccc3O2)nnc1N1CC[C@@]2(CNC(=O)C2)C11791 –8.684 0.43 CO[C@@H]1C[C@H](c2ncc[nH]2)N(C(=O)c2cccc(-c3ncn[nH]3)c2)C1738 –8.678 0.43 CCC1(c2ccccc2)CN(C(=O)Nc2ccc(-n3ccnn3)cc2)C11013 –8.677 0.44 Cn1cnnc1C[C@]1(O)CCCN(Cc2ccc3c(c2)CCO3)C12355 –8.671 0.44 Cc1ccc2[nH]c(C(=O)N(C)C[C@H]3OCC[C@H]3c3ncn[nH]3)cc2c1C
Doxorubicin -7.59 2.72 Cc1[nH]c2c(CN)cnn2c(=O)c1C(C)C

In the scope of this study, the lowest triazole derivativemolecules were selected after performing molecular dock-ing. Also, we include doxorubicin, which is an approveddrug targeting breast cancer, in docking simulations asa control experiment. Table 1 showcases the lowest es-timated binding free energies, IC50 values, and SMILESrepresentations. Doxorubicin results are similar to reportsfrom relative studies (Elmorsy et al., 2023; Avula et al.,2023).AutoDock Vina predicts bound conformations andscores that indicate binding affinity. NGL Viewer wasused to create three-dimensional visualizations to ana-lyze and illustrate the interactions between the KDM5Aprotein residues ligand 700, presented in Figure 6. Inthe predicted conformation, the binding pocket of 700included three key residues: Cys481, Tyr472, and Lys501.In particular, forming hydrogen bonds with Lys501 and

Cys481 and pi-bond with Tyr472. According to AutoDockVina scores in Table 1, ligand 700, with a score of –11.042kcal/mol, was the most potent compound. Ligands 91,449, 284, 1021, 624, and 344 had scores of –10.658kcal/mol, –10.261 kcal/mol, –9.985 kcal/mol, –9.877kcal/mol, –9.847 kcal/mol, and –9.802 kcal/mol, respec-tively (Table 1). The lower AutoDock Vina scores for lig-ands 700, 91, and 449 prompted the synthesis of thesecompounds for further biological evaluation. The triazolederivative compounds in Table 1 bind to the active site inthe KDM5A-N8 co-crystal structure in a way that is similarto what was seen before. Figure 7 shows triazole derivativestructures for 700, 91, and 449.Even though these results are not conclusive enoughto claim new chemotherapeutic agents, Autodock Vinascores of 700, 91, and 449 suggest a strong affinity to in-hibit KDM5A. In terms of molecular docking computation
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Figure 6. 3D binding pose between 700 and 5ive’s active site, includinginteratomic interactions

Figure 7. Top scoring triazole derivative compounds after molecular dock-ing simulations. A) 700, B) 91, C) 449

requirements, increasing virtual CPUs and exhaustivenesscan lead to new binding conformations. We recommendsynthesizing these compounds and conducting additionalexperimental analyses such as apoptosis assays, MTT as-says, ADME studies, X-ray crystallography, and Cryo-EMto evaluate their medicinal properties since these com-pounds possess the potential to be better candidates thatexhibit promising IC50 profiles for further study. This de-tailed structural information from the docking study helpsin designing or modifying compounds with better affinityand selectivity in the future. Also, it would be interestingto apply structure prediction strategies such as alphafoldand target new structures.

4. Conclusions

We chose 2,411 triazole-like ligands from the Enamine Pre-mium database, which has 62,612 compounds. Then, weused Autodock Vina and Deepchem software to do molec-ular docking simulations against KDM5A (PDB ID: 5ive).Among these newly identified inhibitor candidates, com-pounds 700, 91, and 449 exhibited the lowest AutodockVina scores (< -10 kcal/mol). Compound 700 displayedthe lowest score at -11.042 kcal/mol, with an estimatedIC50 value of approximately 0.01 µM. Triazoles 91 and 449demonstrated comparable IC50 values of 0.02 and 0.03
µM, respectively. Notably, the docking score of the well-established agent doxorubicin was in agreement with itsIC50 experimental value, with a score of -7.59 kcal/moland an IC50 value of 2.72 µM. The binding energy scoreof the triazole derivatives, which resulted from hydrogenbonds and π–H interactions with the protein residues, fol-lowed the order of 700 < 91 < 449, with scores of -11.042,-10.658, and -10.261, respectively. Finally, the top triazolederivatives (700, 91, and 449) presented low IC50 values,making them potential therapeutic agents, but furtheranalysis, such as experimental methods and the applica-tion of state-of-the-art methods, should be addressed infuture studies.
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