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Abstract
Each person’s gait pattern is individual and influenced by many factors. Maintaining safe mobility with the fullest possible functionalcapacity is an essential objective of rehabilitative and preventive approaches. An abnormal gait is a change in the gait pattern. Everyperson’s natural walking style is unique. However, injuries and illnesses can affect your gait. Anything that affects your brain, spinalcord, legs or feet can alter your gait. The signs and symptoms of gait abnormalities depend on the type of abnormality you suffer from.Some of the most common symptoms are, for example: Dragging or shuffling of the feet, loosing balance, pain when walking, etc.. Gaitanalysis is the method that makes it possible to recognize problems when walking, identify the cause and initiate appropriate measuresto rectify them (Kirtley, 2006; Richards et al., 2022).This paper proposes a solution for a simple yet reliable evaluation of the individual’s gait pattern in order to reduce asymmetries and torealize a phase of rehabilitation until full recovery by evaluating the gait as completely as possible. The objective is to record anddocument information on the gait pattern and the forces acting on each leg. The approach is based on micro-electro-mechanicalsystems (MEMS)-Acceleration sensors and the application of the Dynamic-Time-Warping (DTW)-algorithm, implemented on amobile Internet of Things (IoT)-module, which is used on each leg. Thereby a mobile system is realized, providing the continuous dataacquisition which makes long-term evaluation possible.
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1. Introduction

Human gait is influenced by various factors, includingpoor fitness, neurological and musculoskeletal conditionsand, of course, degenerative changes due to ageing or In-juries. Poor gait control is associated with disability, falls,increased morbidity and mortality and is therefore an im-portant personal and public health issue. This projectaims to lay the foundation for continuous monitoring ofgait in order to achieve benefits for the user in both pre-vention and rehabilitation by evaluating the gait and theforces acting on the respective leg. The focus is on short,medium and long-term changes in both prevention andrehabilitation progress (Hartmann et al., 2013; Huang et al.,2017). Both domains have short-term as well as medium-

and long-term objectives. The short-term objectives in-clude recognizing an asymmetrical gait and analyzing thecauses through posture exercises and analysis of footwear.This identification is the basis for an evaluation of thecauses and subsequent correction of the gait in order toavoid the corresponding long-term consequences. Themedium- and long-term objectives are an recognition ofage, accident and health-related changes at an early stagein order to achieve a targeted improvement.In the context of rehabilitation, for example in the case ofa broken leg and the subsequent healing phase, it shouldalso be possible to monitor the forces acting on the dam-aged leg so, that rehabilitation can be optimally supportedby appropriate load specifications. Such force specifica-
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tions exist, but it is almost impossible for the user to carryout such specifications, such as a maximum load of 30 %,in practice without system support. The system presentedin this paper is an IoT-platform, based on (Klinger, 2019),that meets the requirements for mobility, Plug-and-Play(PnP) and can be used as wearable without any specificrequirements like special shoes, etc..In section 2 the IoT-system is introduced, based on ourplatform design. The following section 3 describes the ap-plication which is in focus in this paper and shows eitherthe gait analysis and the corresponding results. In sec-tion 4 we conclude the paper and show aspects of furtherwork.
2. Embedded Systems in the Focus of Biomedical

Applications
There are a large number of biomedical applications thatuse different sensors to obtain information about thecondition of the body or to obtain information aboutmovement statics and dynamics. These sensors includeforce sensors, acceleration and gyro sensors and alsosensors for the acquisition of electrocardiogram (ECG),electromyogram (EMG) electroneurogram (ENG), andelectroencephalogram (EEG).We describe some applications for prosthesis control,gait monitoring and and posture assessment, all of whichare aligned with our system platform, including the useof Internet of Things (IoT) modules. The system architec-ture is a key factor in supporting stationary and mobileapplications. and mobile applications. Mobile applicationshave special requirements, e.g. in terms of portability,energy consumption, computing power and integrationinto existing infrastructures. Therefore, the system archi-tecture is based on the system we presented in (Klingerand Bohlmann, 2020). IoT-modules have been addedto the original to expand the range of functions. TheseIoT-modules enable the wireless connection of the vari-ous system different system components to a central unit.Thanks to the platform architecture, the various modulesspan their own network (via Bluetooth Low Energy (BLE))or wireless local network in accordance with IEEE 802.11(wireless local area network according IEEE 802.11 (WiFi)))and connect to a gateway over a greater range. This gate-way, i.e. a SmartDevice, enables the system to be inte-grated via WiFi or Global System for Mobile Communi-cation (GSM), i.e. cellular-secured Internet. To realize aplatform-based system architecture, which enables mo-bile operation that is only which is only person-bound andnot location-bound, the following features are essential:

C1 Independence from a specific environment environ-ment.C2 Integration of all necessary sensors into the platform.
These properties make the platform universally adapt-able. For example, the gait evaluation based on shoe-integrated pressure sensors described in (Klinger, 2016)

Figure 1. Low-level system architecture.

can be replaced by a different sensor configuration to meetthese requirements. Other current solutions, describedin (Matuska et al., 2020) and (Bourahmoune et al., 2022),take a different approach and shift the functionality to ex-ternal, non-personal equipment (chairs, cushions). Thisallows application only in specific locations. The lowestlevel of the platform architecture used here is shown inFigure 1. The local IoT system, hereafter called SmartBox,consists of an ESP32 (Espressif, 2019) and application-specific sensors; here we have only one MEMSsensor with6 axes (acceleration (x , y, z) and gyroscope (x , y, z)), anMPU6050. This ESP32 platform is the workhorse for allapplications and can be adapted to the specific applicationusing a variety of sensors.
The SmartDevice is connected for configuration anddata modification, e.g. to download and display all theraw data stored on the ESP32 or to configure the platform.The other levels are not the focus here, a brief descrip-tion will suffice: The cloud database is the sink for all datafrom all local IoT systems and the source for all data min-ing and data-based fusion and identification operations.This architecture integrates all IoT systems and supportsvarious different modes and the corresponding scenarios(Klinger and Bohlmann, 2020). In all applications, we tryto improve the PnP character by achieving as little systemcomplexity as possible for the measurement and at thesame time as much measurement and operating conve-nience as possible and a low cost approach. This meansthat the SmartDevice is only required for certain displaysand events. A more advanced system mode, which allowsthe raw measurement data to be transferred at certaintimes from the local system to a cloud architecture andthus also to a server for evaluation, has already been pre-sented in (Klinger and Bohlmann, 2020). In gait monitor-ing and posture assessment in particular, the main task isto compare trajectories or curves in order to identify spe-cific movements. In the following subsections, we presentthis relationship in more detail.
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Figure 2. Normal gait, one step, right leg: Vertical Force plotted over timefor 3 sensors (1 (red), 2 (green), 3 (blue), sum(1,2,3) (magenta), see Figure 3.

Figure 3. Positions of the force sensors in side the sole.

3. Applications

While the posture evaluation was in focus in (Beckmannand Klinger, 2023), here we concentrate on the gait evalua-tion. In this paper we are focusing on the gait evaluation toto enable prevention and rehabilitation in this context. Ac-cording the simple PnP-approach, we are using only sim-ple sensor and device configurations. Therefore, we arenot using specific footwear for integrating force sensorsbut utilize acceleration sensors exclusively within MEMS-modules integrated in our IoT-platform. In (Donath et al.,2016b) it was shown that the reliability of such an approachis sufficient compared to more complex solutions. There-fore we have no detailed information regarding the forcecurves (see figure 2) using for example three force sensorsin a specific sole (shown in figure 3).
3.1. Gait Analysis

Gait control, also known as gait modulation, refers to thetechniques and mechanisms used to control and influenceindividual gait. This is particularly important in the fieldsof prevention and rehabilitation, but also in sports science,neurology and not least in robotics. Gait control is crucialfor improving mobility, preventing and healing injuriesand increasing performance. This involves a variety ofareas that are not the focus here, such as bio-mechanics,neurological control, muscle function, sensory feedback,etc.. There are lots of basic spatiotemporal parameters,like gait cycle time, cadence, gait speed and stride length.There are various options to acquire data for gait analysis(Kirtley, 2006; Richards et al., 2022), for example:

Figure 4. Position of the SmartBoxes for gait monitoring.

• Computerized video cameras to show movement in slowmotion,• Markers placed on the skin to monitor motion on cam-era,• Sensors on a platform to measure footstep pressure andstride length,• Electrodes placed on skin to monitor muscle move-ment,• Infrared markers to measure joint movement in threedimensions.
In this paper the focus is the realisation of a simple andefficient method, based on a IoT-module without any iden-tification capabilities and a corresponding server environ-ment, the PnP-approach. Here, we are using only twoSmartBoxes at the ankles, shown in figure 4.

As already described in the introduction, the focus hereis primarily on prevention and rehabilitation, identifyingthe following tasks:
• Prevention

– Analysis of the evenness of gait.
– Offline Identification of various parameters, such asdifferent leg lengths, etc..

• Rehabilitation:
– Monitoring of the momentary and cumulative forcesthat occur.
– Return to a evenness of gait to indicate the end ofrehabilitation.
With regard to the PnP-constraint, the question re-mains as to which signals need to be recorded and eval-uated in order to achieve these objectives. First we haveused the trajectory of the feet to analyse the correspond-ing movement between left-right steps. But the later on
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Figure 5. Stride phases for normal gait, left leg. Figure 6. Stride phases for normal gait, right leg.

we have switched to the norm of the acceleration sensor(x, y, z) only to realize both, the gait monitoring and theforce measurement based on one data stream per leg. Weshow in section 3.2 the results of different application tasksrelated to gait monitoring.
3.2. Results

First of all we have realized a step identification, this isimportant to find the maximal forces per gait. In additionthere is a gait phase identification integrated, based ontypical pauses between steps (Ullrich et al., 2020). Whenwalking, each step is the result of a complex process inwhich current speed, position of the person’s center ofgravity, ground conditions and a variety of other parame-ters have to take into consideration. Therefore it is neces-sary to realize the DTW-based (Jablonski, 2012; Srivastavaand Sinha, 2016) gait monitoring by mean values of gaitphases (Barth et al., 2013). Not every pair of left-rightsteps are very similar due to the effect of the describedinfluencing factors. So, compared to force measurement,the analysis of the gait evenness is based in the first orderon average values.In figure 5 and 6 a typical gait of some left-right steps isshown, the left steps in Figure 6, the right steps in Figure 6.Each step is characterized by a maximum acceleration(acctotal = √
accx2 + accy2 + accz2. This maximum is cre-ated by the impact on the ground and shows the reactionforces of the footstep. The force maximum for every stepis marked by a cross, different gait phases are identifiedby colors. Using the DTW-algorithm you can calculate amean value between all consecutive steps of one gait phase.One example for one pair of steps is shown in figure 7; thesimilarity of the two steps left-right is clearly shown.The data for DTW and the force equivalent ||acc|| areshown in table 1.Both, the force-difference and the DTW-distance aresmall, indicating a normal gait. Nevertheless, the gait is

Figure 7. DTW-alignment of consecutive steps for the normal gait.

not perfect. . .In figure 8 and 9 the gait of a person with a limp isshown. All information in the figures are to be understoodas in the previous example.Using the DTW-algorithm you can calculate a meanvalue between all consecutive steps of one gait phase. Oneexample for one pair of steps for the gait with a limp isshown in figure 10. The similarity of the two steps left-right is clearly shown.The data for DTW and the force measurement are shownin table 1.Both, the force-difference and the DTW-distance areclearly visible, indicating a non normal gait.The second project objective was to determine theforces, using only the acceleration sensor. The objective isto obtain information on the corresponding healing phasefor the rehabilitation of a broken leg, for example, and toestablish a correlation between healing success and the
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Figure 8. Stride phases for gait with a limb, left leg. Figure 9. Stride phases for gait with a limb, left leg.

Figure 10. DTW-alignment of consecutive steps for the gait with a limb.

occurrence of load peaks and a total load with the help ofthe seamless data. According (Donath et al., 2016a,b), theforce measurement based on acceleration sensors is reli-able and can therefore in this application replaced the morecomplex measurement with force sensors. This certainlyleads to more abstract statements, but is very likely suf-
Mean Diff ∥acc∥ per Phase Mean DTW-Distance per Phaseleft right

Normal Gait0.03 12.8 16.0Normal Gait with a Limb1.29 18.3 11.1
Normal Gait (Zhou et al., 2023)0.14 ± 0.10 15.05 ± 2.14 14.55 ± 3.09

Table 1. Force equivalent and DTW-distance for normal gait and gait witha limb.

Figure 11. Maximum force per step (normal gait).

ficient for an initial correlation. The SmartBoxes, usedfor this project, are attached to the ankles with Velcrostraps. This makes them easy to use and requires no spe-cial footwear. So, the force measurement is carried out ex-clusively with the acceleration sensor and the correspond-ing norm of the 3 dimensions. Calibration is necessaryhere in order to be able to take into account different shoesaccording to their damping behavior. The damping behav-ior changes the force peaks compared to the force curve.In figure 11 the forces of the normal gait are depicted,shown in figures 5 and 6.It is clear that there are differences in the normal gait,as each step has to balance the gait over the left and rightfoot.In figure 12 the forces of the gait with a limp are de-picted, shown in figures 8 and 9. Here it is clearly visiblethat one foot is less loaded. In addition, a limit is shownhere, which allows the force assigned to the rehabilitation
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Figure 12. Maximum force per step including a limit (gait with a limp).

progress to be entered and the user to be informed, forexample by a signal tone from the smart device, that thecurrent limit has been exceeded. Without this help, it ishardly possible to estimate the specified maximum loadaccordingly. In figure 13 the cumulative force is shown, toget additional information on how much load has occurredin total over a period of time. This enables an additionalcorrelation with the progress in healing.
3.3. Validation

To validate the soundness of our approach, we apply itto the DUO-Gait dataset presented in (Zhou et al., 2023).The dataset contains 6-minute walking sessions recordedfor 16 participants under different conditions. As thereis no comparable data available for the gait with a limp,we use the normal gait data for validation. The results areaveraged across all subjects and presented in table 1 as well;clearly exhibiting the similarities to the results obtainedin this paper. A subset of the forces from a normal gait inthe DUO-Gait dataset (subject 1, first 17s) is depicted infigure 14, relating to the results shown in figure 11. Theresults are highly similar, indicating the reliability of ourapproach.
4. Conclusions

The platform has also proven itself in this project for the in-tegration of IoT-applications; the ESP32 workhorse offerssufficient flexibility to implement this application as well.The use of a platform for recording and processing dataand statuses in biomedical applications therefore allows ahigh level of system complexity for different applicationscenarios and at the same time offers a high level of sys-tem flexibility. The integration of micro-controller-basedIoT-modules into the platform enables decentralized in-telligence, so that functions and evaluations can be exe-

Figure 13. Cumulative force over time.

Figure 14. Maximum force per step (normal gait, validation).

cuted locally and thus, for example, the identification ofapplication-specific events can be realized at a low systemlevel. In addition, corresponding trigger functions, suchas the notification of an excessive load on a leg, can beimplemented directly. All aspects also provide a very goodopportunity to reduce the communication effort and thusimprove subsequent data integration and data evaluation.
In this work, the objective was to perform a reliableand simple evaluation of gait movements already on theSmartBoxes (IoT-modules, ESP32) in order to have an eas-ier application in mobile operation; in other words, to havea better PnPbehavior. Using the data for an evaluation ofgaits and making rehabilitation scenarios more transpar-ent especially by the mobile application represent an im-provement in the prevention and rehabilitation of postural
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deformities when walking. Using the DTW-algorithm andaccelerometer-based force measurement are the key fac-tors to achieve the project goals. The disadvantage of amandatory calibration procedure is outweighed by the ad-vantage of simplicity; no special footwear is required. Thenumber of users must be increased in order to ensure thereliability of the results and to recognize possible inter-individual challenges in data acquisition and the corre-sponding identification. Furthermore, the following tasksand key aspects have to be in focus of future work:
• Working on a simple housing for the SmartBoxes withregard to robustness.• Extension of verification patterns and procedures tooptimize the reliability of gait evaluation.• Optimization of calibration and initialization proce-dures.• Establishing a better limit handling, using a table forthe rehabilitation phase and generating an easy log-procedure.• Work on a version for use in the sports sector for variousrunning disciplines (Chambers et al., 2015).• Testing the power consumption in different scenariosto get a reliable statement about the operating time inmobile operation.
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