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Abstract
Language models are intended to process and generate text. In the extensive training process, however, they also develop arithmeticskills and the skills required to write programming code. In this work, we investigate whether it is possible to identify the areas in theneurons of these models responsible for a specific skill. For this purpose, we consider arithmetic tasks and let a language model solvethem by completing and extracting the activation states of the neurons via synthetically generated datasets. We then try to reconstructthe results from individual groups of neurons using regression models to find the relevant groups for solving the tasks. Linearregression models, regression trees, and support vector regression are used to uncover possible relationships. We identify that neuronpairs, not individual neurons, in the LLM can be identified as responsible for specific arithmetic behavior. We also find that severaldistinct pairs of neurons in the GPT2 XL model are responsible for arithmetic capabilities, indicating a redundant encoding of thesecapabilities. In the future, this can lead to smaller models being extracted from larger ones for specific tasks.
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1. Introduction

We investigate in which layers and neurons the arithmeticcapabilities of large language models are located. In the fu-ture, we hope to extend this work to find the programmingcapabilities of large language models (LLMs). Identifyingthese areas can improve the LLM’s explainability. It couldalso allow direct neuron activation or extraction of neurongroups from an LLM for specialized tasks, such as modi-fying and repairing source code.
Such research is of fundamental importance in AI re-search, as explainability in AI servers as a basis for ethicaland fair AI systems Dalal et al. (2023). It can also serve as abasis for pruning and regularization of LLMs Lehmler et al.(2023), leading to more efficient and specialized models.
For this purpose we try to answer the research ques-tion Where are the arithmetic capabilities of a large language

model located?. For this we select the task of counting to

find where are sequential arithmetic capabilities located?. Welook at addition and the slightly more complex multipli-
cation to ask where are commutatitve and associative arith-
metic capabilities located?.

Language models generate text by continuing se-quences of characters. They calculate the probability ofthe following characters from the statistical model theylearned during model building and training. Today, calcu-lating these probabilities is usually approximated with aneural network (Bengio et al., 2000).
Recently, the Transformer has established itself asthe model architecture of choice (Vaswani et al., 2017).The method initially introduced for machine translationhas almost completely replaced the previously predomi-nant recursive architecture with long short-term memory(LSTM) (Hochreiter and Schmidhuber, 1997). Coupledwith the idea of pretraining and subsequent fine-tuning(Howard and Ruder, 2018) (Radford et al., 2018), the ex-
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cellent scalability of the architecture has led to the break-through of so-called large language models.With the GPT2 model (Radford et al., 2019), it becameincreasingly clear that these models develop capabilitiesin the pretraining phase for which they were not explicitlytrained but can still compete in many tasks with super-vised, trained models created specifically for these tasks.Further scaling of model size and data volume led to moreand more capabilities of the models (Brown et al., 2020),which were better adapted to questions and chat applica-tions using fine-tuning techniques (Ouyang et al., 2022).Current models go beyond pure language models by in-tegrating other modalities, such as images, into the pre-training (OpenAI, 2023). The explainability of these mod-els is an active area of research, but many unansweredquestions remain. An overview can be found in (Zhao et al.,2023).This article investigates how healthy abilities acquiredin the pretraining phase can be assigned to individual neu-rons or groups of neurons, so-called expert units. To thisend, we investigate the arithmetic abilities of GPT2 mod-els for which the model architecture and parameters areopenly available after training. Starting from a syntheticdataset of arithmetic tasks, we analyze the activation ofneurons during execution. Using different regression mod-els, we analyze whether the results of the arithmetic taskscan be calculated from the activation values.This publication is organized as follows. In section 2 weshow the current state of the art of capability localizationin LLMs. In section 3 explain how we generated our datasetto apply our own approach and explain the approach itself.Results are discussed in section 4. We draw conclusions insection 5 and give an outlook of future research directions.
2. State of the Art

The expert units in deep learning were first investigatedin image analysis (Bau et al., 2017; Fong and Vedaldi, 2018).In large language models, discovering the "sentiment neu-ron" in creating a language model based on positive andnegative product reviews was the first important mile-stone (Radford et al., 2017). A single neuron whose ac-tivation could control whether a generated review has apositive or negative sentiment was identified.In (Suau et al., 2020) and (Cuadros et al., 2022), GPT2models were also examined for the presence of linguisticconcepts, such as the concept "bird" or others from Word-Net (Miller, 1995), and based on classification tasks for thepresence of the concept, it was decided which neurons areresponsible for the concept. Typically, groups of 60 neu-rons were identified and activated by intervention in theneural network to condition the generation on a specificconcept.(Dalal et al., 2023) apply a symbolic reasoning approach,specifically Concept Induction, which was originally de-signed for the Semantic Web. They manage to attributespecific labels from image detection to individual neurons

Figure 1. Process of our approach consisting of generating the dataset,extracting the activations at runtime and building a regression model

in a convolutional neuronal network.(Lehmler et al., 2023) concentrate on more complextasks in image classification. Thus they do not look at indi-vidual neurons but rather activation patterns in the entirenetwork by modelling networks as stochastic processes.By using neurscience techniques they extract spiking ac-tivity and use an arrival process following the Poisson dis-tribution in a deep neural network.When analyzing whether the truth value of a statementin a language model is represented in the internal states, aclassification model for the truth value of statements wasfitted in (Azaria and Mitchell, 2023) based on the activa-tion values of different layers in the OPT-6.7B (Zhang et al.,2022) and LLAMA2-7b (Touvron et al., 2023b) models. Theclassification accuracy was tested on a data set created inthe thesis with statements on cities, animals, inventions,companies, and scientific facts. A feed-forward networkwith three layers and (256, 128, 64) neurons was used asthe regression model. For the OPT-6.7B model, the bestvalue of 0.70 for layer 20 of 32 was achieved across all state-ments. For the LLAMA2-7b model from Meta’s LLAMAseries (Touvron et al., 2023a), almost 0.83 accuracy wasachieved for layer 16 of 32. The other layers achieved lowervalues. The accuracy values differed significantly for thedifferent types of statements. Overall, it can be seen thatthe middle layers or just below were the most suitable forreconstructing the truth values. The study did not attemptto localize the information on the truth of the statementsin groups of individual neurons. Since even with a com-plex neural network as a classifier and the informationfrom entire layers, only modest classification accuracy wasachieved, finding a "truth neuron" seems problematic.
3. Materials andMethods
We generated a synthetic data set with arithmetic tasks asa first task of Figure 1. This dataset was then tested withthe GPT2 models small and XL.
3.1. Generating the Data set

We construct a synthetic data set consisting of arithmetictasks for the evaluation. To achieve this, we create text se-quences that end with an arithmetic task to be completedby the model. Then, the model has to add a token that
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generates the expected following number, the task result.To ensure that we identify token activation indepen-dent of the token order or preceding text, we are using thePython package Loreipsum1 to simulate a variable contextby generating a sentence of varying length before eachactual task that we want to solve. Some example sentencescan be seen here:
• Sed modi velit etincidunt non numquam ut.• Neque magnam dolorem voluptatem.
3.1.1. CountingWe investigate counting as an arithmetic operation. Themodel should provide the next token in a sequence of num-bers. E.g. given the sequence "1 2 3" the expected resultis "4". In this case, we also do not advise the model tocomplete the count.For this, we generated a dataset consisting of 1000counting exercises. Examples are:
• Quisquam magnam ipsum sit dolor. 1 2 3 4 5 6 → 7• Velit ipsum sed voluptatem modi tempora tempora.1 2 3 → 4• Est velit aliquam dolore non velit neque.1 2 3 4 5 6 7 8 9 10 11 → 12• Sed modi velit etincidunt non numquam ut.1 2 3 4 5 6 7 8 → 9
3.1.2. AdditionThe second task is a simple addition of two real valuednumbers. After the random context, we set the languagemodel to simple addition tasks, also advising the model toconduct a calculation.Examples of the test set, generated with 100 samplescontain:
• Velit neque dolorem neque consectetur. Calculate 2 + 3 =• Labore neque modi non. Calculate 4 + 5 =• Dolorem tempora aliquam ipsum. Calculate 7 + 1 =
3.1.3. MultiplicationThe third task is a simple multiplication of two real-valuednumbers. After the random context, we set the languagemodel to simple multiplication tasks with small numbersbelow 10.Examples from the test set of 100 samples contain:
• Etincidunt est tempora dolorem tempora. Calculate 5 ∗6 =• Sit adipisci non aliquam voluptatem. Calculate 3 ∗ 3 =• Tempora adipisci dolorem velit porro. Calculate 7 ∗ 2 =
3.2. Implementation of the Model

We examine the GPT2 models available via Huggingfaceand the Transformer library (Wolf et al., 2020). We load

1 https://pypi.org/project/lorem-text/)

the weight using the NanoGPT implementation 2 based onPytorch (Paszke et al., 2019). The experiments were takenwith the temperature set to 0.8 and top-K sampling (Fanet al., 2018) to 1.To extract the activations of the neurons in the LLM atinference time, we use TorchLens (Taylor and Kriegesko-rte, 2023).We start with the small model with 124 million param-eters, for which we only test counting. We inspect severallinear layers of the transformer model and store the acti-vation values at each generation process.For the counting example, we obtain 1000 vectors andtarget values from the set 4, 5, ..., 12, 13. The small modelcan consistently conduct the counting operation, so we didnot extend the experiment to the XL model for counting.We use the XL model with 1.5 billion parameters for theaddition and multiplication tasks and obtain 100 vectorsand target values from the set 3, 4, 5, .... In addition tomultiplication, the XL model had to be used because thesmall GPT2 model cannot consistently perform these twooperations with successful outcomes.We implement different regression models with theSci-Kit Learn (Pedregosa et al., 2011) package to predictthe results from the activation vectors. For this purpose,the regression model is trained with 750 examples, testedwith 250 in the counting case, trained with 75 examples,and tested with 25 in the addition case. Besides linearregression, we try regression trees (Loh, 2011) and supportvector regression (Awad et al., 2015).
4. Results and Discussion
We present the results tested on GPT2 small, with a vectorof 1000 samples for counting and GPT2 XL for additionand multiplication with 100 samples each.
4.1. Counting

A linear regression model with all 50257 features from thelast linear layer can reproduce the labels with a R2 value ofover 0.98. This is unsurprising since the last layer containsall the neural network information.Suppose we try the same with activating the last linearlayer of the attention blocks with 768 activations. In thatcase, a linear regression model cannot reconstruct the labelwith a reasonable R2 value.In the last linear layer, we now try to determine whetherindividual neurons (groups) can predict the result usinglinear regression. First, we try to predict the countingresult with each 50257 neuron from the activation values.However, no R2 values above 0.17 can be achieved, andtherefore, no helpful prediction can be made.Now, we want to find out whether there are pairs thatcan be used to infer the result with linear regression. Sincethe number of pairs with over a billion possibilities does
2 https://github.com/karpathy/nanoGPT
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Figure 2. Mean and standard deviation of the R2 value of 1000 randomneuron groups over the size of the groups for counting.

not allow us to try out all possibilities, we first try to findpairs using random selection. Some pairs that lead to R2
values above 0.90 can be found.In 500,000 randomly selected neuron pairs, 12 pairswith R2 values above 0.87 can be found. The best one at an
R2 of 0.91.We have also attempted to solve the optimization prob-lem systematically using heuristic optimization meth-ods. However, attempts with simulated annealing (Ruten-bar, 1989) and genetic optimization (Srinivas and Patnaik,1994) with different hyperparameters did not yield goodresults.We repeat the same experiments with groups of 3 neu-rons. These only lead to insignificantly better R2 valuesthan with two neurons—the best one at an R2 of 0.93. Theability to continue a sequence of numbers thus appears tobe concentrated in neuron pairs.We tested the same with regression trees (Loh, 2011)and support vector regression (Awad et al., 2015) withsimilar results but much longer computing time. So, weworked with linear regression for the rest.Therefore, the information the language model usesfor counting can already be found in individual neuronpairs—not just a single one, but several. The information,therefore, appears to be redundant in the language model.To test how many neurons are needed in the mean topredict the result, we sample 1000 neuron groups of size kranging from 1 to 50 and calculate the mean of R2 over the1000 samples. Figure 2 shows the mean and the standarddeviation of the 1000 samples.
4.2. Addition

We look at the 100 addition tasks with the small model andtry linear regression with individual neurons. For singleneurons, the best value we achieve here is 0.39. Figure 3shows the distribution of values for all individual neurons.

Figure 3. R2 of single neurons for addition task with GPT2 small.

Looking at the generated responses, it becomes clearwhy the prediction from the activations cannot work. Thecalculations that the small model makes are usually wrong.In contrast to simple counting, the small GPT2 modelwith 124 million parameters could not perform the ad-ditions correctly. The same applies to the medium (345million parameters) and large version (774 million param-eters) of GPT2. However, the XL version, with over 1.5million parameters, has achieved this capability. But onlyfor small numbers below 10. This is an example of the"emerging capabilities" of language models, as discussedin (Wei et al., 2022).Therefore, analogous to the previous counting tasks,we try to find whether single neurons or neuron groupsresponsible for the calculations can be found. To achievethis, we again use linear regression and the data set createdin section 3.1.We check the ability of all individual neurons to predictthe result of the addition tasks. The neuron with the bestvalue provides an R2 of 0.966, but it is not the only onewith high values. Figure 4 shows the distribution of R2
values across all neurons.Since we can choose from a large number (50257) ofcharacteristics for the linear regression, could it be thatsuch a high R2 is only achieved by pure chance?To check this, we create a matrix of dimension(50257,100) with random numbers between 0 and 1 andcalculate the linear regression with each column of thismatrix against the labels of our addition task.The maximum R2 we achieve in this way is 0.26, andthe distribution of all values can be seen in Figure 5.Therefore, the good predicted values of the linear re-gression cannot have arisen by chance. There must, there-fore, be information about the additions to the activations.
4.3. Multiplication

We now test the XL model with multiplication tasks fromsection 3.1. Linear regression with single neurons yields
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Figure 4. Distribution of R2 values of the single neuron predictions withGPT2 XL.

Figure 5. Distribution of R2 values of regression with a random matrixusing GPT2 XL

a value of R2 = 0.89 as the best value, and Figure 6 showsthe distribution of R2 values across all neurons. These areslightly worse than the addition tasks. More errors occurwhen generating the multiplication tasks. The XL modeldoes not master the multiplication tables without errors.This lack of capabilities can be seen when you compareFigure 6 with Figure 4. For groups of 2 neurons, an in-significantly better value of 0.93 was found.
5. Conclusions

To answer Where are the arithmetic capabilities of a large
language model located?, while in the work of (Radfordet al., 2017), a single neuron was responsible for the sen-timent of the text, and (Cuadros et al., 2022) identifiedgroups of about 60 neurons for linguistic concepts such as"bird," this study indicated that simple arithmetic skills

Figure 6. R2 of single neurons for multiplication task

such as counting, addition, and multiplication could bereconstructed from the activation of a single neuron ortwo neurons of the last two layers with high precision.But only if the model is large enough for its capabilities.So, the small GPT2 model can do counting but cannot docalculations, but the XL version can.
While the answer to where are sequential arithmetic ca-

pabilities located? was that several pairs of redundant neu-rons were responsible, for where are commutatitve and as-
sociative arithmetic capabilities located? the answer is thesame, but is only reflected in larger language models.

In the last two layers of the Transformer Model, notonly can one specific neuron predict the result with highaccuracy, but many neurons have that capability. Thatdiffers from the sentiment neuron’s findings in (Radfordet al., 2017). The information for the capabilities is storedredundantly in the network.
To be able to test the other arithmetic abilities, it makessense to switch to more powerful language models withmore parameters (Touvron et al., 2023a), (Jiang et al.,2023), (Penedo et al., 2023), as these have also developedmore abilities. It would be exciting to investigate whethergroups with a few neurons can also be found for otherarithmetic abilities, like calculating with larger numbersor solving equations.
It would also be interesting to observe how the abilitiesdevelop and can be localized during training. It is expectedthat neurons representing the abilities can only be identi-fied at an advanced stage of the process. For this purpose,checkpoints should be saved during training and used toconduct regression tests, as in this work.
In the future it would be interesting to extend this ap-proach beyond arithmethic capabilities, for example spe-cific tasks in image processing, such as segmentationPraschl (2021).
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