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Abstract
This paper outlines a conceptual framework for an agent-based model (ABM) designed to investigate the significance of warningmessage informativeness in the context of large-scale event evacuations. Unlike other disaster scenarios where the detail withinwarning messages has been shown to impact response times and decision-making, the effectiveness of such informativeness inlarge-scale event settings remains underexplored. By leveraging the Protective Action Decision Model (PADM) among otherpsychological theories, this framework seeks to enhance evacuation simulations by incorporating a nuanced understanding of howindividuals process warning messages during large public gatherings. Our approach aims to dissect the trade-offs between theconciseness and the detail of warning messages, specifically examining if and how the level of information affects evacuation behaviourin crowded scenarios. Given the study’s conceptual stage, we discuss theoretical implications and propose simulation scenarios toexplore this dynamic. This inquiry is foundational, setting the groundwork for subsequent empirical research to validate theframework and ascertain the relative importance of message informativeness in emergency communications during large-scale events.
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1. Introduction

In the preparation of large-scale events, simulations areoften used as part of an evacuation and event planningstrategy. Historical tragedies highlight the need for suchstrategies; The 1989 Hillsborough Disaster, resulting in96 fatalities due to flawed crowd management and evacu-ation tactics, and the 2003 Station Nightclub Fire in WestWarwick, Rhode Island, with 100 lives lost during a chaoticevacuation, exemplify the dire consequences of inade-quate evacuation procedures. These incidents highlightthat especially for large-scale events where high-densitysituations pose a risk of stampedes and crowd crushes,anticipating potential bottlenecks and evaluating eventstructures and emergency exits are crucial to ensure effi-

cient and safe crowd control. Evacuation simulations playa pivotal role in this context, aiding in predictive analy-sis, enhancing safety, optimising resource allocation, andproviding essential training for emergency responders.However, the complexity of human behaviour in such sim-ulations is often simplified, with strong assumptions oncrowd movements and information dissemination. Espe-cially in emergency situations, individual and collectiveresponses can vary significantly, creating challenges inevacuation planning. Over-simplification of human be-haviour is problematic, as it can result in ineffective orhazardous evacuation strategies with optimistic estima-tions of evacuation times, neglecting evacuation delays.Evacuation delays can lead to preventable fatalities, oftencaused by individuals to waste time seeking additional
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information (Kuligowski and Omori, 2014). An effectivewarning message can reduce such delays. However, thedilemma lies in crafting such messages; they must be con-cise for quick comprehension, yet informative enough toprevent the delay in protective actions caused by informa-tion seeking (Kuligowski and Omori, 2014). In disaster re-sponse, the aspects of an effective warning message (Sadiqet al., 2023; Sorensen, 2000; Wood et al., 2018) have beeninvestigated, and existing psychological models have beenincorporated into evacuation simulations (e.g. Favereauet al. (2020); Ramos et al. (2022). However, in evacuationsimulations for large-scale events, such models have notbeen included, and simplified approaches to informationdissemination are employed. Furthermore, it is unclear towhat extent the aspects of an effective warning messagein disaster response translate to the more acute and densesetting of large-scale events. Our work addresses this gapby first investigating the current state of the art of effectivewarning messages and psychological disaster responsemodels. These results are used to develop our model ofwarning message informativity and a behavioural modelapplied to the context of large-scale events. The selectionof models and parameters will be guided by their applica-bility to large-scale event evacuations and data collectionfeasibility. Subsequently, we conceptualise integratingthese elements into an agent-based model (ABM). Thecapability of the resulting ABM, namely the simulationof individual decision processes after receiving a warningmessage, enables researchers to observe how modifica-tions in warning message content and delivery influenceoverall responsiveness and evacuation efficiency, offeringvaluable insights into optimising emergency communica-tion strategies. We aim to explore the trade-offs betweenthe informativeness and length of warning messages. Weinvestigate whether the effectiveness of long, informativemessages observed in natural disasters (Wood et al., 2018)holds in the context of dense, large-scale events.
2. State of the art

To address these challenges, we first examine warningmessage effectiveness and the application of psychologicalmodels in evacuation simulations.
2.1. WarningMessage Effectiveness

The protective action decision process following a warningmessage about a hazardous event is iterative. It involvesfour key phases as stated in Wickens et al. (2015): com-prehending the message, assessing its believability, ver-ifying the information, and personalising the risk. Thisprocess, particularly during the verification phase, oftenincludes additional steps of seeking and sharing informa-tion, collectively termed ’milling’. These stages are notsequential; individuals may cycle through them repeatedlyin no fixed order. Ultimately, this process culminates inthe individual’s decision on which protective measures to

Table 1. Specification of criteria contained in an informative warning mes-sage according to Wood et al. (2018)
Criteria Specific Aspects
Hazard Consequences of the hazard’s impactThreat posedHow protective action can reduce consequencesGuidance How to take protective action to maximize health andsafetyLinking of the protective action to basic human values(e.g., evacuate to keep your family safe)Location Location of the eventAreas affected and unaffectedTime By when protective action should be takenHow long the action should continueSource Who the message is from

adopt, based on their feasibility. This process, especially‘milling’ behaviour, contributes to evacuation delays. Inthis study, we define an effective warning message as amessage that minimises possible evacuation action delay.In this context, an effective warning message has beenstudied in different kinds of emergencies. For natural dis-asters, an effective message should contain informationon the nature of the warning message, location, guidance,time and source of the hazard risk (Sorensen, 2000). Woodet al. (2018) further summarized the findings of recent re-search on these criteria, which can be found in Table 1.They further investigated what constitutes an effectivewarning message in the context of wireless emergencyalerts for mobile devices during natural disasters. Theyfound that longer, more informative warning messagesreduced warning response delay. This contrasts findingsfrom other studies, which identified brief messages as suf-ficient (Sadiq et al., 2023). The impact of the amount ofinformation provided on motivating protective action fordifferent hazards and the point at which additional infor-mation is no longer beneficial is still unknown (Wood et al.,2018). To our knowledge, there is no study investigat-ing the warning effectiveness for evacuating large-scaleevents, a scenario which is often acute.
2.2. PsychologicalModels onHumanResponse inCrisis

Situations

This decision-making mechanism is influenced by variouspsychological factors, as explored in several psychologi-cal models. Numerous psychological models on humanresponse in crisis situations exist, but to our knowledge,only four of these are directly related to disaster scenarios.Namely, the extended parallel processing model (EPPM)(Witte, 1992), the person-relative-to-event theory (PrE)(Duval and Mulilis, 1999), the protection motivation the-ory (PMT)(Maddux and Rogers, 1983) and the protectiveaction decision model (PADM) (Lindell and Perry, 2012).EPPM looks at how people respond to fear appeals in mes-sages and balances between perceived threat and efficacy.PrE theory suggests that protective action, for example,evacuations, is taken based on an individual’s perception
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of an event’s proximity relative to themselves, consideringboth situational and intrapersonal factors. PMT proposesthat the attitude towards health behaviour (e.g. quittingsmoking) depends on the perception of threat (severityand likelihood of consequences, e.g. lung cancer) and per-ception of response- and self-efficacy. It is usually appliedwhen a disease endangers an individual’s health. Recur-ring factors in these models are situational and personalcharacteristics, perception of risk and protective actionefficacy. The PADM includes all of these – except for self-efficacy- and is further extended with different types ofcues, channels used to obtain information and perceptionsof information sources and stakeholders to explain howpeople decide to take a specific protective action such asevacuating.
2.3. Modelling and Simulation of Evacuation Process

Many kinds of evacuation simulations exist, and some ofthem are based on parameters that can be found in thepsychological models of human crisis response. ABMs arecommonly used as their unique characteristic of a bottom-up structure, the ability to model heterogenous agents,and their actions leading to emergent behaviour makethem especially suitable to meet the needs of evacuationsimulation.Chen et al. (2023) for instance, present an inter-disciplinary ABM that integrates empirical decision datafrom surveys and drills into simulations for tsunami evac-uation. Their model uniquely considers natural and builtenvironment impacts and social system dynamics, high-lighting the non-linear effects of milling time and evac-uation participation on mortality estimates. Ramos et al.(2022) used PADM as a basis of their behavioural ABM forwildfire evacuation, where they modelled an agent’s deci-sion to evacuate as a function of their risk perception andrisk threshold. Risk perception is modelled as a functionof internal (socio-demographic data) and external factors(fire model, observing others leaving, evacuation order).They did not consider all parameters of the PADM suchas stakeholder perception or protective action perception.The reception of an initial evacuation order was dependenton a failure probability set by the user.Roy et al. (2022)developed an ABM exploring how multiple informationsources influence flood risk perception and evacuation de-cisions. The model further incorporates factors such ashazard risk, household socio-demographics, and socialnetwork influences, using data from Miami-Dade County.It found that higher trust in hazard forecasts and socialnetwork recommendations increases evacuation compli-ance, highlighting the interplay of trust in informationsources on evacuation behaviours. (Favereau et al., 2020)introduce a multi-method simulation approach integrat-ing Risk Homeostasis Theory (RH) Wilde (1982) for evac-uation decision-making during volcanic eruptions. RHsuggests that individuals have a target level of risk theyare willing to accept, and their behaviour adjusts in re-sponse to perceived changes in risk. For example, if people

feel safer due to precautionary measures, they may takemore risks, maintaining their personal risk threshold. Themodel combines system dynamics (SD) and ABM to simu-late individual risk perception and acceptance levels influ-enced by vulnerability, trust, knowledge, and communitysense. The research, focused on the 2008 Chaitén eruptionin Chile, reveals how psychosocial factors and individualdecision-making processes impact evacuation outcomes.In terms of warning strategy, Van Der Wal et al. (2021)explored evacuee responses to different emergency com-munication strategies using ABM. They tested the impactof dynamic emergency exit floor lighting, staff guidanceat exits, and public announcements in English on evacua-tion efficiency in transport terminals with diverse crowdcompositions. The findings suggest that dynamic light-ing and staff guidance improve evacuation times in high-density situations and for individuals unfamiliar with theenvironment. At the same time, English announcementshad mixed effects depending on the crowd’s languageproficiency. Their research highlights the importance oftailoring emergency communications to crowd charac-teristics for better evacuation outcomes. Many simula-tions for crowd evacuation scenarios exist. However, toour knowledge only Lovreglio et al. (2016) include pre-evacuation behaviour in their model. They simulate cin-ema theatre evacuations by applying behaviour theoriesto predict actions across three states—normal, investiga-tion, and evacuation—factoring in perceived risk withinevacuation scenarios. Their model incorporates the in-fluences of environmental- and social cues, demograph-ics, personal characteristics, and behavioural uncertainty.However, agents were moving during the evacuation de-cision process. Unlike disaster simulations that often in-corporate some aspects of psychological models for disas-ter response, crowd evacuation simulations have typicallynot utilised these frameworks. This oversight highlightsa significant research gap in understanding the protec-tive action decision process for large-scale events, whichcould differ markedly from more commonly studied sce-narios such as hurricanes, tsunamis, and building evacu-ations. As highlighted, ABMs have been instrumental inthis domain, offering a ’laboratory environment’ for test-ing various parameters, creating hypothetical scenarios,and determining the level of detail necessary to predictcrowd behaviour accurately. This research aims to explorethe trade-off between the informativeness and length ofwarning messages within the context of crowd evacua-tions, acknowledging that findings from other disasterscenarios may not directly apply due to the unique dynam-ics of large-scale event movements. Identifying gaps incurrent models, particularly in the context of large-scaleevents, guides our methodological approach to develop-ing a more nuanced ABM that integrates key aspects ofeffective warning messages and psychological behaviourmodels.
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Figure 1. Extended PADMModel The model by Lindell & Perry (2012) contains factors influencing the choice of behavioral response to threats. Self-efficacyis added from the PMT (Maddux and Rogers, 1983). In this graph, boxes represent variables and circles latent variables (constructs). Arrows represent(hypothesized) relations. Boxes, circles and lines in blue are variables based on the model with empirical evidence, whereas boxes, circles and lines in greyare lacking empirical evidence.

3. Materials andMethods

Building on the insights gained from our literature review,we outline our methodological framework designed to re-fine evacuation simulations by integrating the processingof warning message strategies and a disaster response-related behavioural model.The selection process for the underlying theoreticalmodel that guides our ABM development was conducted inthe following way. Given the complexity of evacuation be-haviour during large-scale events, we prioritised modelsthat account for individual and collective dynamics. Afterconducting a systematic literature review using keywordssuch as ’Event evacuation,’ ’Protective action decision,’and ’Evacuation behaviour’ in Google Scholar and assess-ing the psychological models in the first 10 results, wedetermined the Protective Action Decision Model (PADM)to be most fitting. This choice was because the PADM wasthe most frequently mentioned model and had empiricalsupport for the parameters involved. Unlike PrE, whichfocuses narrowly on individual perceptions of event prox-imity, PADM considers factors influencing the evacuationdecision.Despite EPPM appearing in relevant literature (Heathet al., 2018), its limited mention suggested a narrowerapplicability for our purposes. Additionally, many of itsfactors also appear in PADM, missing only fear and self-efficacy. RH theory, while prominent in studies of drivingbehaviour (Wilde, 1982), is rarely applied in disaster con-texts, though its concept of risk tolerance has been used in

some simulations of evacuation behaviour (Favereau et al.,2020) . PMT might also be valid in the context of acute dis-asters (Chenoweth et al., 2009), but many variables are al-ready part of the PADM. Thus, our ABM is mainly based onthe PADM, enhanced by elements of RH and PMT, to accu-rately simulate evacuation decisions. We extend the PADMto include self-efficacy (PMT and EPPM) and risk tolerance(RH) as additional agent properties. The remaining prop-erties related to the PADM are social- and environmentalcues, warning message, receiver characteristics (alcoholand hearing/ seeing ability), pre-decision processes (ex-posure, attention, and comprehension), risk perceptionand trust in information sources. In this first version ofour simulation, channel is omitted since for now we onlyhave one information channel, namely screens as warningdevices. A graphical representation of our extension ofthe PADM is depicted in figure 1 and an explanation of thevariables is provided in table 2. In the ABM, we furthersimplified the model by excluding protective action per-ception under the assumption that all participants agreethat an evacuation is necessary. Stakeholder perceptionwas also not included, as we could not find any supportingempirical evidence in the literature. Situational facilita-tors are implicitly modelled through motive-based actionselection.
3.1. Warning Representation

Since we aim to quantify the effects of warning messages,we require a numerical representation of their informative-
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Table 2. Factors Influencing Emergency Response
Parameter Description Sources
Channel access and preferences Where do people get their information from duringan emergency? (staff, family and friends, strangers,news)

Lindell and Perry (2012); Fujimoto et al. (2020); Stra-han and Watson (2019); Zeng et al. (2019)
Warning message Did people perceive the warning message? Lindell and Perry (2012); Fujimoto et al. (2020); Stra-han and Watson (2019)Information sources Perception of person/group/institution disseminat-ing the warning message (trustworthiness) Lindell and Perry (2012); Fujimoto et al. (2020)
Environmental cues Sights, smells, or sounds that signal threat Lindell and Perry (2012); Fujimoto et al. (2020); Stra-han and Watson (2019)Social cues Observations of other people’s behavior (e.g., evacua-tion, milling) Lindell and Perry (2012); Fujimoto et al. (2020); Miletiand Fitzpatrick (1992)Receiver characteristics Abilities (hearing and seeing), intoxication level Lindell and Perry (2012); Beckmann et al. (2021); Zenget al. (2019)Predecision processes Exposure and attention to and comprehension of cuesand messages Lindell and Perry (2012); Fujimoto et al. (2020)
Risk perception Perceived likelihood of being personally harmed bythreat and perceived severity of threat for personalhealth and finances

Lindell and Perry (2012); Fujimoto et al. (2020); Heathet al. (2018); Strahan and Watson (2019); Chenowethet al. (2009)Stakeholder perception Trustworthiness and perceived knowledge of stake-holders (event organizer, staff, emergency service,family/friends. . . )
Lindell and Perry (2012); Fujimoto et al. (2020); Liuet al. (2019)

Protective action perception Perceived effectiveness of possible behavioral re-sponses and their inconvenience attributes (costs,required knowledge, skills, time, effort, and coop-eration)

Lindell and Perry (2012); Fujimoto et al. (2020); Stra-han and Watson (2019); Terpstra and Lindell (2013);Liu et al. (2019); Chenoweth et al. (2009)
Situational facilitators/impediments Factors influencing situational factors (action beforewarning, group) Lindell and Perry (2012); Fujimoto et al. (2020); Ras-mussen and Wikström (2022)Intention Intention to engage in protective action Lindell and Perry (2012); Fujimoto et al. (2020); Al-barracín et al. (2001); Becker et al. (1995)Self-efficacy Confidence in own abilities Maddux and Rogers (1983); Beckmann et al. (2021);Chenoweth et al. (2009)Risk tolerance Level of risk the individual is willing to accept Wilde (1982)

ness. Drawing from Wood et al. (2018), we identify 10 keyattributes that constitute an effective warning message.To automate the scoring of warning messages, we are com-piling a database of KatWarn messages, each annotated forcontent based on these attributes using ChatGPT’s assis-tance. Firs ChatGPT was provided with thre examples ofhow a warning messages should be annotated and then foreach attribute ChatGPT was asked wheter the given infor-mation is present in the warning messages. This databaseis used to fine-tune a pre-trained transformer model, suchas BERT (Devlin et al., 2019), creating a ’warning messageencoder’ that evaluates message informativeness, as de-picted in figure 2.
3.2. Agent-BasedModel of Large-Scale Events

As aforementioned, ABMs are well-suited for simulatingprotective action decision-making during crowd evacua-tions at large-scale events because they can account forthe complex interactions and heterogeneity among indi-viduals. ABMs allow for the modelling of individual be-haviours based on specific rules, simulating how differentfactors (e.g., risk perception and social influence) affecteach agent’s decisions. This approach is particularly ef-fective in capturing the dynamic nature of crowds, whereindividual decisions and interactions can lead to emergent

behaviours not predictable from the aggregate. Our modeldelineates two primary states for agents: "normal" and"emergency." In the normal state, agent behaviour ad-heres to the specifications outlined by Meyer et al. (2024),with actions driven by individual characteristics such asage, gender, or fitness level, and immediate needs (e.g.,thirst) dictating movement towards specific goals (e.g., thenearest drinks stall). This framework is expanded to en-compass "sense of safety" and "information" as additionalmotives in the emergency state, prompting evacuation orinformation-seeking actions, respectively. Transition tothe emergency state is triggered by the perception of awarning message or exposure to environmental or socialcues, with these newly introduced motives diminishingbased on PADM-derived principles.
3.2.1. Information Processing
Before information can be processed, a warning mes-sage needs to be perceived first. The perception proba-bility is computed using a physical model which calculateshow well a warning message can be seen depending onan agent’s relative location to the warning source. Eachmessagew is represented as a 10-dimensional vector (i.e.
n = 10) derived from the attributes listed in 1 with valuesranging from 0 to 1 indicating the presence and extent of
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Figure 2. (a): Conceptual depiction of annotated warning message database (b): Visualization of warning message encoder input and output

these attributes, where 1 signifies maximum informative-ness.
w = (w1,w2, . . . ,wn),w ∈ Rn wherewi ∈ [0, 1] (1)

Each agentAhas an attention capacity, denoted byλ, whichranges between 0 and the length of the warning message
l. This value is drawn from a beta distribution on the as-sumption that most participants have a similar attentioncapacity, processeing most of the information. This willlater be adapted after obtaining further experimental val-ues. The attention will be modeled differently dependingon whether the source of the warning message is audio orvisual. Attention for an audio warning message is modeledby a window which represents the length of the warningmessage received, where the starting point i is randomlysampled:

wA = (wi, . . . ,w(i+λ)) (2)
This is based on the hypothesis that once an audio warningmessage is received, attention is sustained for a specificlength of time as shown in figure 3. For visual warningmessage information parts are randomly sampled with theprotective action recommendation having a higher proba-bility of being selected, reflecting the ability to selectivelyprocess written information. This exact representation of awarning message allows us to simulate in detail what infor-mation agents can exchange when they enter the millingprocess. Furthermore, we derive an informativity scoredefined as:

Informativity =
∑(i+λ)
i wA
lideal (3)

Where lideal is the length of an ideal warning message i.e.10. In the case of a repeated perception of the warningmessage (nperceived > 0), unreceived parts of the warningmessages are sampled as a starting point (stp) with higher

probability, depending on the information motifMinfo:
P(stp = i) =

{0.5 if nperceived = 0
1 – (wi + Minfo)/2 (4)

Furthermore, an agent shares his knowledge of the warn-ing message with other agents in their proximity with acertain probability depending on how "extroverted" theyare.
3.2.2. Decision Process
We simulate different reactions after the first reception byincorporating the perceived warning message with otherfactors relevant to the PADM. For now, the functional re-lationships between influencing parameters are assumedto be in a weighted linear relationship but can be replacedwith different functions after further empirical evidencehas been retrieved or to test alternative theories. For read-ability reasons, we omitted the weights in all the equationshereafter. We model the parameters by equipping eachagent with the corresponding properties. Environmentaland social cues, denoted cueenv and cuesocial respectively,are both represented as binary variables where 0 and 1signal the absence or presence of the corresponding cue,respectively. If an agent is in the receptive proximity ofeither of these cues then the variable is set according to aspecific probability:

p(cue = 1) = 1 – dij(dmax + 1) (5)
Where dij is the distance of an Agent i to a cue j and dmaxis the maximum distance, a cue is considered to be per-ceptive from. All the other properties are represented ona continuous scale ranging from 0 to 1. While some prop-erties are dynamically changing (i.e. environmental cues,social cues, alcohol), depending on how the agent interactswith their environment, others are static and are initial-ized according to distributions derived from survey data
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Figure 3. Example of information obtained by an Agent with attention span 4

(i.e. trust in information source, abilities) which will becollected in the future. Based on the hypothesis that ifan environmental cue or social cue is present an agenthas heightened attention and that alcohol consumptioninhibits attention abilities, attention for an Agent A is cal-culated the following way:
λAt = λAt-1 + cueenv + cuesoc – (1 – sober) × λAt-1 (6)

Furthermore, it is assumed that if environmental cues arepresent (i.e. cueenv = 1), then an agent is aware of thehazard type, and the corresponding value in the warningmessage array is set to 1. Receiver characteristics suchas language fluency (lang) are considered by multiplyingthe representation of the received warning message withthe corresponding value. Trust in the source (trustsource)is taken into account in the same manner. The receivedwarning message then becomes a function of the origi-nal warning message, attention and the other agent at-tributes:
wA = trustsource × lang× (wi, . . . ,w(i+λ)) (7)

One main aspect of the warning message is the protec-tive action recommendationwpa, if an agent has been ableto retrieve this information, then the agent is informedand the value for the information motifMinfo ∈ (–1; 1) iscomputed as follows:
Minfo =

{
scoreinfo – (cuesoc + RP)/2 ifwpa > 0
–1 ifwpa = 0 & cuesoc = 1(8)Representing an increased need for information when per-ceiving social cues. This is in accordance with Mileti andFitzpatrick (1992). Similarly, the higher the perceivedrisk of an agent the stronger the need to gather additionalinformation, in accordance with findings in (Mileti andFitzpatrick, 1992; Fujimoto et al., 2020). If an agent issubjected to social cues and has not learned about the pro-tective actionwpa, then the information motif is –1, thus

causing the agent to pick the action “information seeking”.Furthermore,Minfo is normalised such thatMinfo ∈ (0; 1).Risk perception is computed as a result of the predictionprocess in the following way:
RP = (scoreinfo + cueenv)/2 + (1 – 1

nsoc + 1 )cuesoc (9)
Where nsoc represents the number of times a social cuehas been perceived. Finally the decision to evacuate ismade when the risk perception is above an individuals riskthreshold, similarly to Ramos et al. (2022). Equation 9 im-plies that frequent exposure to a social cue will eventuallylead to an evacuation decision.
4. Simulating the Hamburg Harbour Festival

As an example of a large-scale event, we modelled the an-nual Harbour Festival in Hamburg, Germany. The festivaltakes place in the area surrounding the port, includingthe waterfront and various venues along the Elbe River. Itfeatures various activities such as ship parades, live musicperformances, fireworks, food and drink stalls, and cul-tural events. The Hamburg Harbour Festival attracts manyvisitors each year and is considered one of the biggest portfestivals in the world. For the model, we represented onlya section of the whole area around the public transport sta-tion “Landungsbrücken” (upper right in figure 4). Thisarea contains several attractions for visitors, including astage (green rectangle in figure 4) and access to the water-front via several footbridges (bottom of figure 4). To modelevacuation communication, we position several warningdevices across the modelled area and compute their percep-tibility range, indicated by the regions coloured in shadesof blue. Agents within this range can perceive the warn-ing message issued by the device. Agents enter the areafrom several entry/exit points at the area’s borders. Theythen move towards targets such as food stalls, the stage,or a different exit point utilising physics-based pedestrianmovement and a needs-based action selection mechanism.Similarly, after an evacuation warning message is emitted,
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Figure 4. Snapshot of the ABM of the Hamburg Harbour Festivalwith agents (persons) depicted as little dots. The area comprises buildings (dark grey),stalls (red) and a stage (green). Visibility of information displays is rendered in shades of blue.

agents begin to evacuate or seek additional information.This implementation is the first simplified version of theintroduced framework, including a binary warning mes-sage perception, information seeking and -sharing, dis-plays as warning devices, hunger, thirst, entertainmentand rest as needs. We hypothesise that
1. unlike in the scenario of a natural disaster, the messageinformativeness is less important for reducing evacuationdelay, and short and concise messages are more effective;2. The location and quantity of warning devices are mostimpactful in reducing evacuation delays;3. Including an information and decision process leads tomore accurate evacuation times than employing a simplemultiplier effect.
5. Conclusion and Future Work

Our work has established a foundational framework forintegrating warning message informativeness and disas-ter response models into agent-based modelling (ABM).With the aim of investigating to what extent warningmessage informativeness plays a result in evacuation out-come in a dense and interactive environment where bothenvironmental- and social cues are frequently encoun-tered. Recognising the current model’s limitations, es-pecially its reliance on theoretical assumptions over em-pirical evidence, we outline several directions for futureenhancement: We will use the model to explore scenariosunder varied assumptions about the functional relation-ships between variables. This will help us understand themodel’s dynamics under different conditions and demon-strate its adaptability to various emergencies. Sensitiv-ity analyses are crucial to identify which parameters sig-nificantly affect the model’s outcomes. This step will di-rect our empirical research efforts to refine these parame-ters and inform the required complexity of the model. Tomove beyond simple linear assumptions, we plan to collect

data through surveys and virtual reality (VR) experiments.This data will help us refine the parameters’ mathematicalrepresentation and validate the model’s realism. Qualita-tive feedback from experts experienced in event evacua-tions will externally validate the model’s utility and real-ism. While our model presents an approach to simulatingevacuation scenarios, it has limitations. One significantchallenge is accurately capturing and validating individu-als’ risk perception, particularly in experimental settingssuch as VR, which can feel artificial to participants. Fur-thermore, the opportunity to validate our model againstlarge-scale events involving real emergencies is rare, com-plicating efforts to test and refine our simulations againstactual outcomes. Currently, our model’s assumptions, es-pecially concerning the functional relationships betweenparameters, are largely theoretical. The lack of empiricalevidence for these relationships underscores the neces-sity of our planned future work, emphasising the impor-tance of grounding these assumptions in solid empiricalresearch.
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