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Abstract

This paper proposes a practical approach for developing production planning tools in Small and Medium-sized Enterprises (SMEs). We
focus on modeling material flow (products and intermediates) to keep things simple for production workers who will use the tool.
Since these workers may not have specialized modeling knowledge, we represent the production flow as a network of processes,
containers (objects), and connecting transport routes. Arrows on the connections show flow direction. This structure resembles a
graph or Petri net, which we leverage for our development. We illustrate that every production flow failure or waste can be quantified
as either an underflow or an overflow within an appropriate stack. To achieve this, we introduce the concept of a defect associated
with a planning scheme. Specifically, the defect of a composed scheme is expressed as the sum of particular defects. This approach
allows us to measure and address inefficiencies in the production process effectively.

Keywords: Production flow; process; stack; defect; aggregated constraints

1. Introduction

Simply said, Economics, at its core, revolves around the
flow of goods, services, energy, information, money etc.
within a system. To understand these complex interac-
tions, economists utilize various flow models. These mod-
els simplify the economic landscape by visualizing the
interconnected exchanges between different sectors, such
as:

- Households: Consumers who spend their income on
goods and services.

- Firms: Businesses that produce goods and services and
employ workers.

- Government: The public sector that collects taxes and
provides public goods.

- Financial Institutions: Banks and other institutions

that facilitate financial transactions.

Flow models offer a powerful tool for analyzing:

- Circular Flow: The basic flow of money and resources

between households and firms, illustrating how spend-
ing generates income and vice versa. (e.g., Al-Fedaghi
(2008), Samuelson (1961), Mankiw (2021))

- Leakages and Injections: Factors that disrupt the cir-

cular flow, such as savings (leakage) or government
spending (injection). (e.g., Krugman and Obstfeld
(2020), Blanchard and Johnson (2021))

- Economic Impacts: How changes in one sector (e.g.,

increased government spending) can ripple through
the entire economy. (e.g., Bodie et al. (2021), Auerbach
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and Kotlikoff (2018))

Flow modelling of production plays a crucial role in opti-
mizing and analyzing production processes within various
industries. It involves creating a digital representation of
the flow of materials, products, and information through-
out the production system. This allows manufacturers
to:

- Visualize the production process: Flow models map out
the various stages of production, from raw materials en-
tering the system to finished goods exiting. This visual
representation helps identify bottlenecks, inefficien-
cies, and potential areas for improvement. (e.g., Bodie
etal. (2021))

- Analyze production performance: By simulating the
flow of materials and products, manufacturers can gain
insights into production time, resource utilization, and
overall efficiency. This helps identify areas where pro-
duction can be streamlined or bottlenecks can be elimi-
nated. (e.g., Smith and Johnson (2019))

- Optimize production planning: Flow models can be
used to test different production scenarios and opti-
mize production schedules. This allows manufacturers
to make informed decisions about resource allocation,
inventory levels, and production capacity. (e.g., Lee and
Chen (2018))

- Identify potential problems: By simulating potential
disruptions or changes in demand, flow models can
help manufacturers identify potential problems before
they occur. This proactive approach allows for better
preparedness and mitigation strategies. (e.g., Wang and
Liu (2020))

Different types of flow models exist, ranging from simple
diagrams to complex simulations. Each model offers vary-
ing levels of detail and analysis capabilities, depending
on the specific needs and goals of the production system.
(e.g., Gunal (2019))

Our focus is on modeling production flows specifically
for SMEs. We’re not interested in complex models for
large manufacturers. For SMEs, a simplified approach
that breaks down production into general processes and
stacks (objects) connected by transport paths (arrows) is
often beneficial. Arrows on these connections indicate the
flow direction. This simplified structure can be effectively
represented as a graph or a Petri net, a mathematical tool
for modeling concurrent systems (e.g., Tuncel and Bayhan
(2007)).

The production systems of SMEs are usually character-
ized by the following characteristics. Let’s list the main
ones.

- Customization Reigns Supreme: Unlike large manu-
facturers, SMEs often specialize in producing smaller
quantities of highly varied products. These products
can be individual, unique pieces or made-to-order.

- Low Repeatability: The exact production process for a

specific item might not be repeated often, or the repeti-
tion might be irregular.

- Flexibility is Key: Production systems in SMEs need
to be adaptable to handle frequent adjustments in ma-
chines and lines. This necessitates careful and long-
term storage of actual machine settings.

While Petri nets are our focus for modeling production
flows, our software application offers a wider range of
functionalities. This includes powerful tools for optimiz-
ing and preserving production parameters over the long
term. These parameters encompass production programs,
routes, machines, and technological settings crucial for
Total Quality Management (TQM). Our application lever-
ages big data processing to achieve these functionalities.

In this paper, we propose a general method for calcu-
lating the imperfection of a production plan as a weighted
sum of specific defects. This method yields a quality mea-
sure across all possible plans, which is essential for formu-
lating and solving any optimization problem. We have
adopted this method as a core function within our devel-
oped planning software. However, optimizing a plan re-
mains a complex task, and we are currently exploring so-
lutions using simulated annealing (e.g., Laarhoven and
Aarts (1987)).

The article is organized as follows: In the remaining
part of Section 1, we describe a production process where
various resources (machines, workers) come together to
work on a product. These resources form a temporary
"composite state'" that dissolves upon job completion. The
process alters the state of the flow, which can involve work-
ing on the product, transporting materials, or preparing
the machine.

Section 2 introduces a method for measuring and evalu-
ating imperfections (defects) in production plans. Defects
are viewed as deviations from an optimal flow of materials
in the production process. These deviations are measured
as underflows or overflows in "stacks' representing re-
source availability.

Section 3 describes illustrative examples of buffer
stacks, of evaluating on-time delivery performance, par-
ticularly for products with critical deadlines where both
earlyand late arrivals are undesirable, of scaled penalties in
production environments, of aggregated constraints and
synergy (both positive and negative), and of the trade-off
between flexibility and optimality in production planning
strategies.

Finally, Section 4 concludes the paper.

1.1. Processes

The process alters the state of the flow, which can involve
working on a piece, transporting materials, preparing a
machine, etc. Multiple sources can join the process simul-
taneously. Typically, a product enters the process along
with a machine and a worker. These elements form a tem-
porary "composite state' that dissolves upon completion
of the job. While the product improves, the machine may
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Figure 1. (A) A simplified scheme of iterated process P displays the process
as a box with input stream of products A, output stream of (worked) prod-
ucts B, and a loop of “recycling” machine M. (B) An extended scheme of
the same situation decomposes the process P to particular subprocesses.
Here, the decomposition even splits the main working process to its itera-
tions Py, P2, Px3. Since machine M is ready to accept a next item sooner
than the previous one is finished (typical behaviour of line production),
the difference between process time and cycle time is modeled by sub-
processes P31, P33, P3;. The path of machine M (red) starts with prepara-
tion subprocessP; (warming up, adjustment) and finishing subprocess P,
(cleaning, maintenance). Thus working each item A; — B; takes process
time given by pathP,; + P3;, and the machine M is occupied for time given
by path P; + Py; + Py, + Py + P,

experience minor degradation (dulling, overheating, etc.).

In most cases, the process consumes time. For regular
production, this delay is assumed to be constant or have
minimal randomness. Therefore, the time consumption
can be represented by either a single value or a random
variable. The key parameters are:

+ Process Time: This expresses the time a product spends
within the process.

+ Cycle Time: This expresses the time between the entry
of two consecutive products.

- Changeover Time: This expresses the time needed to
reconfigure the machine for a different production run.

Since sources can enter and leave the process indepen-
dently (forming composite states gradually), we can mea-
sure delays between specific events. This allows us to de-
compose the process into a network of simpler "subpro-
cesses" with predictable behavior (see Figure 1). This ap-
proach resembles tracing partitions using Feynman dia-
grams.

1.2. Stacks

Unlike processes that transform items, stacks simply store
them for an indefinite period. In simpler terms, items
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Figure 2. Overflow and underflow

within a stack only "move in time" without changing their
position along their production path.

In production settings, stacks serve as strategic storage
points for materials, finished products, or buffers to miti-
gate production fluctuations. Their capacity is defined by
minimum and maximum stock levels.

In our previous work (Kruml and Paseka (2018)), we
proposed an algorithm to quickly determine if a production
plan is feasible within the constraints of a specific stack
capacity. An overflow condition indicates a blockage on
input streams, while an underflow indicates starvation
on output streams. The algorithm can also be adapted to
calculate the size of the error associated with exceeding
capacity (see Figure 2).

Beyond physical storage, stacks offer a powerful tool
for representing various types of constraints within a pro-
duction system.

For example, a shipping deadline can be modeled as a
process triggered on a specific date that simply retrieves
ordered goods. The goods are either prepared or not, and
this state is tracked using a dedicated boolean stack. If the
order is ready, the stack value becomes 1. The shipping
process consumes this value, resulting in a decrease to
0. If the shipping process starts prematurely (when the
stack value is 0), the value becomes -1, indicating an er-
ror outside the acceptable range of 0 and 1 (the stack is
underflowed).

Another example involves detecting potential job colli-
sions on a machine. A stack representing the machine’s
readiness can be created. The machine is pushed onto the
stack after finishing a job (and any necessary procedures).
If a job attempts to utilize the machine while it’s not ready;,
the readiness stack would acquire a negative value, similar
to the shipping deadline example.

These examples demonstrate how stacks can effectively
model various constraints within production systems, pro-
viding valuable insights into potential bottlenecks and re-
source limitations.

1.3. Petrinets

Both processes and stacks admit aggregation, i. e. they
can be composed to complex processes or complex stacks.
Then two consequent processes can be either composed
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Figure 3. The scheme represents working cycles of a brush. In the begin-
ning it is at state Sz “ready” and can be used either for white painting Py, or
black painting P. After that, the brush is in one of states Sy, “dirty white”
or S¢ “dirty black” and can be used again for the same painting Py or Pc.
After finishing all jobs in one colour, the brush is cleaned in process P and
returned to the “ready” state Si. Since stacks and processes alternate, one
can consider the scheme as a Petri net. But in reality, the cleaning process
P is triggered only by one of the inputs. We fix the problem by splitting P¢
to two subprocesses P¢y “cleaning white brush” and Pcg “cleaning black
brush”.

or separated by a stack as well as two stacks can be united
or separated by a process (e. g. transport). This results to
a diagram where processes and stacks alternate making
the graph bipartite.

Flows in such graphs can be effectively modeled by Petri
nets or timed Petri nets. Let us recall that a process of Petri
net is fired if all input stacks are non-empty. After firing
the process stock of every input stack is reduced by one
token and stock of every output stack is increased by one
token.

In this way, Petri nets allows to model more complex
processes, e. g. assembly of more components in manufac-
turing or making temporary composite states as discussed
earlier (see Tuncel and Bayhan (2007)). Even controled
processes can be simulated as Petri nets with an extra in-
formation input. The source is boolean. It is filled by a
single token if the process is approved or empty if the pro-
cess is disapproved.

On the other hand, the mechanism of firing processes
might be too restrictive in situations, in which not all input
sources are needed. The problem can be solved by a formal
refinement of stacks or processes which can be less clear
(see Figure 3). However, we assume that every production
network could be in principle modelled by a Petri net.

2. Defect

Our intention is to demonstrate that every failure or waste
of the flow can be measured as an underflow or overflow
of an appropriate stack.

We define a defect as a product of size and weight of such
deviation from optimality. The size is an area of overlaps
of the stock quantity curve. The weight is defined by the
planner and should express seriousness of the defect. Val-
ues of weight can differ for overflow and for underflow
(see Figure 4).

Formally, the defect is given by formula
ty
d:w~J If(t) — mldt
to

where w is weight, m is a bound of optimal stock, f the
stock function, and [to, t;] the interval on which stock is
out of optimal range.

Here’s a reformulated version of the text explaining
breakdown structures in manufacturing:

In manufacturing, we use a concept called breakdown
structures to organize complex processes. These structures
break down entire processes into smaller, more manage-
able sub-processes. Just like you can zoom in on a map to
see more details, breakdown structures allow us to see the
individual steps that make up a larger production process.

This breakdown can be reversed as well. By combining
sub-processes, we can recreate the whole process. This
works similarly to how building blocks can be assembled
to form a larger structure.

An important assumption of breakdown structures
is that any constraints or limitations affecting the sub-
processes will also apply to the larger process they are part
of. Likewise, the defects (or imperfections) of the sub-
processes are expected to contribute to the overall defect
of the final product. There might be some exceptions to
this rule, but we’ll explore those in a later section (section
3.4).

Our concept of defect offers several advantages for eval-
uating production plans:

- Simple Calculations: Defects are additive. This means
the overall health of a plan is simply the sum of the
defects in its individual components. This makes it easy
tounderstand how different parts of the plan contribute
to the overall outcome.

- Independent Evaluation: Independent parts of a pro-
duction plan can be assessed separately. This allows
planners to focus on specific areas without getting
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Figure 4. Blue rectangles are jobs planned for a machine. Activity of the
machine is indicated on stack of its readiness. If there is no job then the
machine is in an idle state. If there are two overlapping jobs then there is
“negative number of ready machines”. Both cases are not optimal. Size of
the defects is calculated from the area of cyan or magenta rectangles. The
overburden is clearly worse and should be penalized with a higher weight.
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Figure 5. The blue stock curve onabuffer stack is created by two consequent
processes. Here the input (feeding) process with three times larger working
batch than the output (consuming) process.

bogged down in complex interactions.

- Efficient Updates: When one makes localized changes
to a plan, only the defects in nearby stacks and within
a specific timeframe are affected. This means one can
efficiently recalculate the overall defect without having
to re-evaluate the entire plan from scratch.

3. Examples
3.1. Buffer stack for different batches

Buffer stacks become essential when consecutive produc-
tion processes handle different batch sizes (as illustrated
in Figure 5). These stacks act as a buffer zone, temporarily
storing items between processes to ensure smooth pro-
duction flow.

While items sit in the buffer, they are technically idle,
which isn’t ideal. However, this idling is unavoidable due
to the difference in batch sizes. We can consider this a
“natural” defect, meaning it’s not something that can be
optimized away without completely restructuring the pro-
duction line.

It’s important to remember that even though this idling
is unavoidable, the buffer stack still introduces a delay in
the overall lead time (the time it takes to complete an or-
der). Additionally, the stored items contribute to the total
production defect, even if it’s not due to errors. Therefore,
when evaluating production plans, we should assign a non-
zero weight to account for the impact of buffer stacks.

3.2. Order intime

For deadlines that are critical, like delivering a wedding
cake, both early and late deliveries are undesirable. The
cake should be fresh, but arriving too soon might mean it
sits out for too long.

To account for this, we can consider a delivery perfor-
mance measure with three possible values: -1 (missed
deadline, the worst outcome), 0 (delivered on time, the
ideal scenario), and 1 (delivered too earlyl, which can also
be negative depending on the product). The situation re-
sembles one from Figure 4.

We can assign different penalty weights to each of these
values. For instance, a late wedding cake (penalty -1)
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Figure 6. Sooner delivery creates an interval of “idle” state (A). Later
delivery creates an interval of “overburden” state (B).
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Figure 7. An extra bound (level) expresses an area in which a defect is
weighted with a higher penalty.

would likely be considered much worse than an early one
(penalty 1).

3.3. Scaled penalties

In real-world factories (industrial practice), penalties for
production issues often increase more severely as the
severity of the issue grows. A small delay might have a
minor impact, but a large delay can be much more disrup-
tive.

We can capture this idea by creating different zones or
levels for evaluating these issues. Each zone would have
a higher weight assigned to it, reflecting the greater con-
sequences of larger deviations from the ideal (see Figure
7)-

Different weights can be also defined for time axis. An
example could be “extended deadline” — missing regular
deadline is “bad”, but missing extended deadline would
be “very bad”.
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Figure 8. For jobs with variable processing times, the likelihood of a defect
occurring depends on when the job finishes. Jobs that haven’t finished by
the minimum allowed time are certain to be incomplete, resulting in the
highest defect value (multiplied by 1). As time progresses, the chance of the
job finishing increases. This means the defect value gradually decreases.
By the maximum allowed time, the job is guaranteed to be finished, and
so the defect value reaches zero. “Density” of the defect in the middle
area is expressed by cumulative distribution function of the probability
distribution.

3.4. Aggregated constrains

Simple addition doesn’t always capture the full picture.
Imagine an order: it’s not valuable until all the pieces are
complete. Similarly, a single right shoe or a single left shoe
isn’t very useful. These examples show that just summing
the value of individual parts doesn’t reflect the true worth
of the whole.

To account for these interactions between components,
we can introduce the concept of synergy. Synergy hap-
pens when the combined value of two or more things is
greater than the sum of their individual values. We can
imagine representing these synergies with virtual stacks,
like counters that keep track of specific combinations.

The importance of each combination can be reflected
by assigning a weight to its virtual stack. This weight indi-
cates how much that particular combination contributes
to the overall value.

Synergy can be positive or negative. For example, as-
sembling a complete product creates positive synergy. On
the other hand, multiple machine failures happening at
the same time (critical coincidence of accidents) would be
a negative synergy.

3.5. Buffer stack for probabilistic variation

Buffer stacks act as a buffer zone in production lines, help-
ing to smooth out inconsistencies. This is particularly
useful when there’s unpredictable behavior at the begin-
ning or end of the production process, such as variations
in processing time by machines.

Imagine these variations in processing time as different
weights. The likelihood of each variation (represented by a
probability distribution and illustrated in Figure 8) can be
seen as another factor influencing the overall impact on
production (similar to how a heavier weight would cause a
bigger disruption).

3.6. Flexibility vs. optimality

More complex example concerns comparison of planning
strategies. One strategy prioritizes minimizing production
times, regardless of cost. This approach keeps inventory
of in-progress work pieces very low, but it might come at
the expense of underutilizing machines.

On the other hand, some strategies aim for smoother
production with larger buffers of partially completed work.
This ensures better machine utilization but can lead to a
build-up of inventory, which can be expensive to store and
manage.

The strategy focused on short production times might
lead to more defects accumulating on the machines them-
selves, due to potential strain or rushing the process. Con-
versely, the strategy prioritizing full machine utilization
might create more defects in the raw materials or partially
finished products that pile up in storage.

We can evaluate a production plan by considering two
key metrics: the total number of machine defects and the
total number of material defects. The ratio between these
values indicates which strategy, short production times or
high machine utilization, might be more favorable for a
particular scenario.

Therefore, an ideal production plan wouldn’t necessar-
ily prioritize one extreme over the other. Instead, it would
likely strike a balance.

4. Conclusion

We have proposed a method to evaluate production plans.
This method assigns a score to each plan, reflecting the
sum of its partial defects. These partial defects represent
any undesirable state the production process might en-
counter.

In this paper, we have demonstrated a wide range of ex-
amples showcasing how production constraints can be im-
plemented and their associated defects calculated. These
defects encompass any production source, effectively cov-
ering all relevant partial measures of plan quality. The
weighted sum of these defects can then be interpreted as
a measure of the overall production plan inefficiency.

The method can be considered as a sort of multiple-
criteria decision and enables to define preference ordering
on a space of possible plans. The enumeration of quality of
the plan provides an essential function for optimization.

This research builds upon our previous work Kruml and
Paseka (2018) on plan validation. The key innovation here
is that we go beyond simply identifying production issues
(overflows and underflows). We also quantify their sever-
ity. This allows us to view these issues not as dealbreakers,
but as factors that can be penalized based on their relative
importance, as determined by the planner.
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