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Abstract
This paper proposes a practical approach for developing production planning tools in Small and Medium-sized Enterprises (SMEs). We focus on modeling material flow (products and intermediates) to keep things simple for production workers who will use the tool. Since these workers may not have specialized modeling knowledge, we represent the production flow as a network of processes, containers (objects), and connecting transport routes. Arrows on the connections show flow direction. This structure resembles a graph or Petri net, which we leverage for our development. We illustrate that every production flow failure or waste can be quantified as either an underflow or an overflow within an appropriate stack. To achieve this, we introduce the concept of a defect associated with a planning scheme. Specifically, the defect of a composed scheme is expressed as the sum of particular defects. This approach allows us to measure and address inefficiencies in the production process effectively.
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1. Introduction

Simply said, Economics, at its core, revolves around theflow of goods, services, energy, information, money etc.within a system. To understand these complex interac-tions, economists utilize various flow models. These mod-els simplify the economic landscape by visualizing theinterconnected exchanges between different sectors, suchas:
• Households: Consumers who spend their income ongoods and services.• Firms: Businesses that produce goods and services andemploy workers.• Government: The public sector that collects taxes andprovides public goods.

• Financial Institutions: Banks and other institutionsthat facilitate financial transactions.
Flow models offer a powerful tool for analyzing:

• Circular Flow: The basic flow of money and resourcesbetween households and firms, illustrating how spend-ing generates income and vice versa. (e.g., Al-Fedaghi(2008), Samuelson (1961), Mankiw (2021))• Leakages and Injections: Factors that disrupt the cir-cular flow, such as savings (leakage) or governmentspending (injection). (e.g., Krugman and Obstfeld(2020), Blanchard and Johnson (2021))• Economic Impacts: How changes in one sector (e.g.,increased government spending) can ripple throughthe entire economy. (e.g., Bodie et al. (2021), Auerbach

1

https://creativecommons.org/licenses/by-nc-nd/4.0/.


2 | 23rd International Conference on Modeling & Applied Simulation, MAS 2024

and Kotlikoff (2018))
Flow modelling of production plays a crucial role in opti-mizing and analyzing production processes within variousindustries. It involves creating a digital representation ofthe flow of materials, products, and information through-out the production system. This allows manufacturersto:

• Visualize the production process: Flow models map outthe various stages of production, from raw materials en-tering the system to finished goods exiting. This visualrepresentation helps identify bottlenecks, inefficien-cies, and potential areas for improvement. (e.g., Bodieet al. (2021))• Analyze production performance: By simulating theflow of materials and products, manufacturers can gaininsights into production time, resource utilization, andoverall efficiency. This helps identify areas where pro-duction can be streamlined or bottlenecks can be elimi-nated. (e.g., Smith and Johnson (2019))• Optimize production planning: Flow models can beused to test different production scenarios and opti-mize production schedules. This allows manufacturersto make informed decisions about resource allocation,inventory levels, and production capacity. (e.g., Lee andChen (2018))• Identify potential problems: By simulating potentialdisruptions or changes in demand, flow models canhelp manufacturers identify potential problems beforethey occur. This proactive approach allows for betterpreparedness and mitigation strategies. (e.g., Wang andLiu (2020))
Different types of flow models exist, ranging from simplediagrams to complex simulations. Each model offers vary-ing levels of detail and analysis capabilities, dependingon the specific needs and goals of the production system.(e.g., Gunal (2019))Our focus is on modeling production flows specificallyfor SMEs. We’re not interested in complex models forlarge manufacturers. For SMEs, a simplified approachthat breaks down production into general processes andstacks (objects) connected by transport paths (arrows) isoften beneficial. Arrows on these connections indicate theflow direction. This simplified structure can be effectivelyrepresented as a graph or a Petri net, a mathematical toolfor modeling concurrent systems (e.g., Tuncel and Bayhan(2007)).The production systems of SMEs are usually character-ized by the following characteristics. Let’s list the mainones.
• Customization Reigns Supreme: Unlike large manu-facturers, SMEs often specialize in producing smallerquantities of highly varied products. These productscan be individual, unique pieces or made-to-order.• Low Repeatability: The exact production process for a

specific item might not be repeated often, or the repeti-tion might be irregular.• Flexibility is Key: Production systems in SMEs needto be adaptable to handle frequent adjustments in ma-chines and lines. This necessitates careful and long-term storage of actual machine settings.
While Petri nets are our focus for modeling productionflows, our software application offers a wider range offunctionalities. This includes powerful tools for optimiz-ing and preserving production parameters over the longterm. These parameters encompass production programs,routes, machines, and technological settings crucial forTotal Quality Management (TQM). Our application lever-ages big data processing to achieve these functionalities.In this paper, we propose a general method for calcu-lating the imperfection of a production plan as a weightedsum of specific defects. This method yields a quality mea-

sure across all possible plans, which is essential for formu-lating and solving any optimization problem. We haveadopted this method as a core function within our devel-oped planning software. However, optimizing a plan re-mains a complex task, and we are currently exploring so-lutions using simulated annealing (e.g., Laarhoven andAarts (1987)).The article is organized as follows: In the remainingpart of Section 1, we describe a production process wherevarious resources (machines, workers) come together towork on a product. These resources form a temporary"composite state" that dissolves upon job completion. Theprocess alters the state of the flow, which can involve work-ing on the product, transporting materials, or preparingthe machine.Section 2 introduces a method for measuring and evalu-ating imperfections (defects) in production plans. Defectsare viewed as deviations from an optimal flow of materialsin the production process. These deviations are measuredas underflows or overflows in "stacks" representing re-source availability.Section 3 describes illustrative examples of bufferstacks, of evaluating on-time delivery performance, par-ticularly for products with critical deadlines where bothearly and late arrivals are undesirable, of scaled penalties inproduction environments, of aggregated constraints andsynergy (both positive and negative), and of the trade-offbetween flexibility and optimality in production planningstrategies.Finally, Section 4 concludes the paper.
1.1. Processes

The process alters the state of the flow, which can involveworking on a piece, transporting materials, preparing amachine, etc. Multiple sources can join the process simul-taneously. Typically, a product enters the process alongwith a machine and a worker. These elements form a tem-porary "composite state" that dissolves upon completionof the job. While the product improves, the machine may
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Figure 1. (A) A simplified scheme of iterated process P displays the processas a box with input stream of products A, output stream of (worked) prod-ucts B, and a loop of “recycling” machine M. (B) An extended scheme ofthe same situation decomposes the process P to particular subprocesses.Here, the decomposition even splits the main working process to its itera-tions P21, P22, P23. Since machine M is ready to accept a next item soonerthan the previous one is finished (typical behaviour of line production),the difference between process time and cycle time is modeled by sub-processes P31, P33, P33. The path of machine M (red) starts with prepara-tion subprocessP1 (warming up, adjustment) and finishing subprocess P4(cleaning, maintenance). Thus working each item Ai → Bi takes processtime given by pathP2i + P3i, and the machine M is occupied for time givenby path P1 + P21 + P22 + P23 + P4.

experience minor degradation (dulling, overheating, etc.).In most cases, the process consumes time. For regularproduction, this delay is assumed to be constant or haveminimal randomness. Therefore, the time consumptioncan be represented by either a single value or a randomvariable. The key parameters are:
• Process Time: This expresses the time a product spendswithin the process.• Cycle Time: This expresses the time between the entryof two consecutive products.• Changeover Time: This expresses the time needed toreconfigure the machine for a different production run.

Since sources can enter and leave the process indepen-dently (forming composite states gradually), we can mea-sure delays between specific events. This allows us to de-compose the process into a network of simpler "subpro-
cesses" with predictable behavior (see Figure 1). This ap-proach resembles tracing partitions using Feynman dia-grams.
1.2. Stacks

Unlike processes that transform items, stacks simply storethem for an indefinite period. In simpler terms, items

time
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Figure 2. Overflow and underflow

within a stack only "move in time" without changing theirposition along their production path.In production settings, stacks serve as strategic storagepoints for materials, finished products, or buffers to miti-gate production fluctuations. Their capacity is defined byminimum and maximum stock levels.In our previous work (Kruml and Paseka (2018)), weproposed an algorithm to quickly determine if a productionplan is feasible within the constraints of a specific stackcapacity. An overflow condition indicates a blockage oninput streams, while an underflow indicates starvationon output streams. The algorithm can also be adapted tocalculate the size of the error associated with exceedingcapacity (see Figure 2).Beyond physical storage, stacks offer a powerful toolfor representing various types of constraints within a pro-duction system.For example, a shipping deadline can be modeled as aprocess triggered on a specific date that simply retrievesordered goods. The goods are either prepared or not, andthis state is tracked using a dedicated boolean stack. If theorder is ready, the stack value becomes 1. The shippingprocess consumes this value, resulting in a decrease to0. If the shipping process starts prematurely (when thestack value is 0), the value becomes -1, indicating an er-ror outside the acceptable range of 0 and 1 (the stack isunderflowed).Another example involves detecting potential job colli-sions on a machine. A stack representing the machine’sreadiness can be created. The machine is pushed onto thestack after finishing a job (and any necessary procedures).If a job attempts to utilize the machine while it’s not ready,the readiness stack would acquire a negative value, similarto the shipping deadline example.These examples demonstrate how stacks can effectivelymodel various constraints within production systems, pro-viding valuable insights into potential bottlenecks and re-source limitations.
1.3. Petri nets

Both processes and stacks admit aggregation, i. e. theycan be composed to complex processes or complex stacks.Then two consequent processes can be either composed
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Figure 3. The scheme represents working cycles of a brush. In the begin-ning it is at state SR “ready” and can be used either for white painting PW orblack painting PC. After that, the brush is in one of states SW “dirty white”or SC “dirty black” and can be used again for the same painting PW or PC.After finishing all jobs in one colour, the brush is cleaned in process PC andreturned to the “ready” state SR. Since stacks and processes alternate, onecan consider the scheme as a Petri net. But in reality, the cleaning process
PC is triggered only by one of the inputs. We fix the problem by splitting PCto two subprocesses PCW “cleaning white brush” and PCB “cleaning blackbrush”.

or separated by a stack as well as two stacks can be unitedor separated by a process (e. g. transport). This results toa diagram where processes and stacks alternate makingthe graph bipartite.Flows in such graphs can be effectively modeled by Petri
nets or timed Petri nets. Let us recall that a process of Petrinet is fired if all input stacks are non-empty. After firingthe process stock of every input stack is reduced by onetoken and stock of every output stack is increased by onetoken.In this way, Petri nets allows to model more complexprocesses, e. g. assembly of more components in manufac-turing or making temporary composite states as discussedearlier (see Tuncel and Bayhan (2007)). Even controledprocesses can be simulated as Petri nets with an extra in-formation input. The source is boolean. It is filled by asingle token if the process is approved or empty if the pro-cess is disapproved.On the other hand, the mechanism of firing processesmight be too restrictive in situations, in which not all inputsources are needed. The problem can be solved by a formalrefinement of stacks or processes which can be less clear(see Figure 3). However, we assume that every productionnetwork could be in principle modelled by a Petri net.
2. Defect

Our intention is to demonstrate that every failure or wasteof the flow can be measured as an underflow or overflowof an appropriate stack.We define a defect as a product of size and weight of suchdeviation from optimality. The size is an area of overlapsof the stock quantity curve. The weight is defined by theplanner and should express seriousness of the defect. Val-ues of weight can differ for overflow and for underflow(see Figure 4).

Formally, the defect is given by formula
d = w ·

∫ t1
t0

|f(t) – m|dt

where w is weight, m is a bound of optimal stock, f thestock function, and [t0, t1] the interval on which stock isout of optimal range.Here’s a reformulated version of the text explainingbreakdown structures in manufacturing:In manufacturing, we use a concept called breakdown
structures to organize complex processes. These structuresbreak down entire processes into smaller, more manage-able sub-processes. Just like you can zoom in on a map tosee more details, breakdown structures allow us to see theindividual steps that make up a larger production process.This breakdown can be reversed as well. By combiningsub-processes, we can recreate the whole process. Thisworks similarly to how building blocks can be assembledto form a larger structure.An important assumption of breakdown structuresis that any constraints or limitations affecting the sub-processes will also apply to the larger process they are partof. Likewise, the defects (or imperfections) of the sub-processes are expected to contribute to the overall defectof the final product. There might be some exceptions tothis rule, but we’ll explore those in a later section (section3.4).Our concept of defect offers several advantages for eval-uating production plans:
• Simple Calculations: Defects are additive. This meansthe overall health of a plan is simply the sum of thedefects in its individual components. This makes it easyto understand how different parts of the plan contributeto the overall outcome.• Independent Evaluation: Independent parts of a pro-duction plan can be assessed separately. This allowsplanners to focus on specific areas without getting
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Figure 4. Blue rectangles are jobs planned for a machine. Activity of themachine is indicated on stack of its readiness. If there is no job then themachine is in an idle state. If there are two overlapping jobs then there is“negative number of ready machines”. Both cases are not optimal. Size ofthe defects is calculated from the area of cyan or magenta rectangles. Theoverburden is clearly worse and should be penalized with a higher weight.
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Figure 5. The blue stock curve on a buffer stack is created by two consequentprocesses. Here the input (feeding) process with three times larger workingbatch than the output (consuming) process.

bogged down in complex interactions.• Efficient Updates: When one makes localized changesto a plan, only the defects in nearby stacks and withina specific timeframe are affected. This means one canefficiently recalculate the overall defect without havingto re-evaluate the entire plan from scratch.
3. Examples

3.1. Buffer stack for different batches

Buffer stacks become essential when consecutive produc-tion processes handle different batch sizes (as illustratedin Figure 5). These stacks act as a buffer zone, temporarilystoring items between processes to ensure smooth pro-duction flow.While items sit in the buffer, they are technically idle,which isn’t ideal. However, this idling is unavoidable dueto the difference in batch sizes. We can consider this a“natural” defect, meaning it’s not something that can beoptimized away without completely restructuring the pro-duction line.It’s important to remember that even though this idlingis unavoidable, the buffer stack still introduces a delay inthe overall lead time (the time it takes to complete an or-der). Additionally, the stored items contribute to the totalproduction defect, even if it’s not due to errors. Therefore,when evaluating production plans, we should assign a non-zero weight to account for the impact of buffer stacks.
3.2. Order in time

For deadlines that are critical, like delivering a weddingcake, both early and late deliveries are undesirable. Thecake should be fresh, but arriving too soon might mean itsits out for too long.To account for this, we can consider a delivery perfor-mance measure with three possible values: -1 (misseddeadline, the worst outcome), 0 (delivered on time, theideal scenario), and 1 (delivered too earlyl, which can alsobe negative depending on the product). The situation re-sembles one from Figure 4.We can assign different penalty weights to each of thesevalues. For instance, a late wedding cake (penalty -1)
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Figure 6. Sooner delivery creates an interval of “idle” state (A). Laterdelivery creates an interval of “overburden” state (B).
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Figure 7. An extra bound (level) expresses an area in which a defect isweighted with a higher penalty.

would likely be considered much worse than an early one(penalty 1).
3.3. Scaled penalties

In real-world factories (industrial practice), penalties forproduction issues often increase more severely as theseverity of the issue grows. A small delay might have aminor impact, but a large delay can be much more disrup-tive.
We can capture this idea by creating different zones orlevels for evaluating these issues. Each zone would havea higher weight assigned to it, reflecting the greater con-sequences of larger deviations from the ideal (see Figure7).
Different weights can be also defined for time axis. Anexample could be “extended deadline” — missing regulardeadline is “bad”, but missing extended deadline wouldbe “very bad”.
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Figure 8. For jobs with variable processing times, the likelihood of a defectoccurring depends on when the job finishes. Jobs that haven’t finished bythe minimum allowed time are certain to be incomplete, resulting in thehighest defect value (multiplied by 1). As time progresses, the chance of thejob finishing increases. This means the defect value gradually decreases.By the maximum allowed time, the job is guaranteed to be finished, andso the defect value reaches zero. “Density” of the defect in the middlearea is expressed by cumulative distribution function of the probabilitydistribution.

3.4. Aggregated constrains

Simple addition doesn’t always capture the full picture.Imagine an order: it’s not valuable until all the pieces arecomplete. Similarly, a single right shoe or a single left shoeisn’t very useful. These examples show that just summingthe value of individual parts doesn’t reflect the true worthof the whole.
To account for these interactions between components,we can introduce the concept of synergy. Synergy hap-pens when the combined value of two or more things isgreater than the sum of their individual values. We canimagine representing these synergies with virtual stacks,like counters that keep track of specific combinations.
The importance of each combination can be reflectedby assigning a weight to its virtual stack. This weight indi-cates how much that particular combination contributesto the overall value.
Synergy can be positive or negative. For example, as-sembling a complete product creates positive synergy. Onthe other hand, multiple machine failures happening atthe same time (critical coincidence of accidents) would bea negative synergy.

3.5. Buffer stack for probabilistic variation

Buffer stacks act as a buffer zone in production lines, help-ing to smooth out inconsistencies. This is particularlyuseful when there’s unpredictable behavior at the begin-ning or end of the production process, such as variationsin processing time by machines.
Imagine these variations in processing time as differentweights. The likelihood of each variation (represented by aprobability distribution and illustrated in Figure 8) can beseen as another factor influencing the overall impact onproduction (similar to how a heavier weight would cause abigger disruption).

3.6. Flexibility vs. optimality

More complex example concerns comparison of planningstrategies. One strategy prioritizes minimizing productiontimes, regardless of cost. This approach keeps inventoryof in-progress work pieces very low, but it might come atthe expense of underutilizing machines.
On the other hand, some strategies aim for smootherproduction with larger buffers of partially completed work.This ensures better machine utilization but can lead to abuild-up of inventory, which can be expensive to store andmanage.
The strategy focused on short production times mightlead to more defects accumulating on the machines them-selves, due to potential strain or rushing the process. Con-versely, the strategy prioritizing full machine utilizationmight create more defects in the raw materials or partiallyfinished products that pile up in storage.
We can evaluate a production plan by considering twokey metrics: the total number of machine defects and thetotal number of material defects. The ratio between thesevalues indicates which strategy, short production times orhigh machine utilization, might be more favorable for aparticular scenario.
Therefore, an ideal production plan wouldn’t necessar-ily prioritize one extreme over the other. Instead, it wouldlikely strike a balance.

4. Conclusion

We have proposed a method to evaluate production plans.This method assigns a score to each plan, reflecting thesum of its partial defects. These partial defects representany undesirable state the production process might en-counter.
In this paper, we have demonstrated a wide range of ex-amples showcasing how production constraints can be im-plemented and their associated defects calculated. Thesedefects encompass any production source, effectively cov-ering all relevant partial measures of plan quality. Theweighted sum of these defects can then be interpreted asa measure of the overall production plan inefficiency.
The method can be considered as a sort of multiple-criteria decision and enables to define preference orderingon a space of possible plans. The enumeration of quality ofthe plan provides an essential function for optimization.
This research builds upon our previous work Kruml andPaseka (2018) on plan validation. The key innovation hereis that we go beyond simply identifying production issues(overflows and underflows). We also quantify their sever-ity. This allows us to view these issues not as dealbreakers,but as factors that can be penalized based on their relativeimportance, as determined by the planner.
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