

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1

23rd International Conference on Modelling and Applied Simulation, 018
21st International Multidisciplinary Modeling & Simulation Multiconference

2724-0037 © 2024 The Authors.
doi: 10.46354/i3m.2024.mas.018

Enhancing Simulation Capabilities Through the
Integration of Discrete Event Simulation and Virtual
Reality

Joseph Jabbour1,2,*, Jalal Possik1, Charles Yaacoub1, Sina Namaki Araghi3,
Simon Gorecki4, Gregory Zacharewicz2 and Adriano O. Solis5

1ICL, Junia, Université Catholique de Lille, LITL, F-59000 Lille, France
2Laboratoire des Sciences des Risques, IMT Mines Alès, Alès, 30100, France
3Tarbes University of Technology (UTTOP), Production Engineering Laboratory (LGP), Tarbes, France
4University of Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France
5School of Administrative Studies, York University, Toronto, Ontario, M3J 1P3, Canada
*Corresponding author. Email address: joseph.jabbour@univ-catholille.fr

Abstract

This paper explores the integration of Discrete Event Simulation (DES) and Virtual Reality (VR) technologies, focusing on
JaamSim and Unity. By combining the strengths of both, we aim to enhance simulation capabilities across various domains. The
integration leverages the High-Level Architecture (HLA) IEEE standard to address interoperability and synchronization
challenges. This approach mitigates resource consumption issues seen in traditional methods that rely on extensive data
transfers, which are dependent on network and server performance. Our integrated system provides an immersive and interactive
environment that improves user engagement and decision-making. It allows trainees to better understand complex processes
through hands-on VR experiences and enables decision-makers to visualize the impacts of different strategies in real-time. This
approach maintains a constant rate of messages per client cycle, irrespective of the simulation length, unlike previous methods
that heavily depended on the process duration.

Keywords: Discrete Event Simulation (DES), Virtual Reality (VR), JaamSim, Unity, High-Level Architecture (HLA), Distributed
Simulation, Interoperability, Immersive environments

1. Introduction

The rapid advancement of technology has ushered in an
era where innovative tools are increasingly being
utilized across various domains to enhance efficiency,
understanding, and performance. Among these tools,
Virtual Reality (VR) and Discrete Event Simulation
(DES) stand out due to their transformative potential.
VR, with its ability to create immersive and interactive
environments, has found applications in sectors

ranging from healthcare to education, offering
significant improvements in training, therapy, and
learning outcomes. DES, on the other hand, excels in
modeling and analyzing complex systems, providing
valuable insights that aid in optimizing processes
across logistics, manufacturing, and healthcare.

This paper explores the current state of VR and DES
technologies, their individual applications, and the
existing challenges in their integration. It aims to
provide a comprehensive overview of the benefits that

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joseph.jabbour@univ-catholille.fr

2 | 23rd International Conference on Modelling and Applied Simulation, MAS 2024

such integration could bring to various sectors,
alongside a detailed examination of the barriers that
need to be overcome. By addressing these challenges,
the paper seeks to contribute to the ongoing efforts in
developing robust and scalable solutions that leverage
the strengths of both VR and DES, ultimately paving the
way for more advanced and effective simulation
environments. In this paper, we specifically address the
integration of JaamSim, a DES tool, with Unity, a
leading platform for VR development. JaamSim is an
open-source simulation software known for its
flexibility and comprehensive set of features for
modeling complex systems (JaamSim, 2024). Unity, on
the other hand, is a widely used game development
engine that offers extensive capabilities for creating
immersive VR experiences (Unity, 2024). The
integration of these two platforms presents significant
challenges, particularly in terms of data exchange and
synchronization. To overcome the interoperability
hurdles inherent in combining these distinct
technologies, the High-Level Architecture (HLA) IEEE
standard is utilized. It is designed to facilitate
interoperability and reusability of simulation
components across diverse platforms (IEEE, 2010).
HLA provides a framework that allows simulations to
communicate and operate together within a common
environment, making it an ideal choice for integrating
JaamSim and Unity.

This paper is organized as follows: Section 2
provides a comprehensive literature review on the
individual applications and benefits of VR and DES
technologies, as well as the barriers to integrating both
technologies. Section 3 outlines the materials and
methods used in integrating JaamSim with Unity,
detailing the tools, frameworks, and methodologies
employed. Section 4 presents the results and discusses
the advantages of the integrated system, highlighting
its effectiveness in enhancing performance, user
engagement, and decision-making. Section 5 covers
the conclusion and perspectives, including future
research directions such as testing with real case
studies, incorporating reinforcement learning, adding
behaviors to agents, and enhancing user experience in
VR environments. Finally, Section 6 acknowledges the
contributions and funding sources that supported this
research.

2. State of the art

VR has been increasingly integrated into various
domains, demonstrating significant benefits across
multiple sectors. For instance, in healthcare, VR
provides immersive training environments,
enhancing the realism and effectiveness of medical
training (Halbig et al., 2022). Similarly, VR
applications in psychology enable the creation of
three-dimensional facsimiles of real objects,
facilitating better psychological studies and
treatments (Wilson & Soranzo, 2015). In the realm of
education, VR's immersive capabilities have been

leveraged to create engaging and effective learning
environments, improving students' understanding
and retention of complex subjects (Radianti et al.,
2020). The technological advancements in VR have
also been beneficial in fields like manufacturing and
logistics, where VR aids in better planning and
operational efficiency (LinkedIn, 2024). The
aerospace and defense industries have adopted VR to
simulate complex scenarios and training exercises,
enhancing preparedness and performance
(MathWorks, 2024). Moreover, public health and
wellness sectors utilize VR for therapeutic purposes,
offering new ways to support mental health and
physical rehabilitation (Hamad & Jia, 2022).

On the other hand, DES has proven to be a versatile
tool in modeling and analyzing complex systems
across various domains. Its applications in logistics
and manufacturing have enabled better planning and
optimization of processes (LinkedIn, 2024). In
aerospace and defense, DES helps in modeling
intricate systems and evaluating different operational
strategies (MathWorks, 2024). The healthcare sector
benefits from DES by using it to model patient flows
and optimize resource allocation, improving overall
efficiency (Vázquez-Serrano et al., 2021).
Additionally, the theoretical foundations and practical
applications of DES are well-documented, providing a
robust framework for researchers and practitioners
(Wainer & Mosterman, 2016; Abu-Taieh & El-Sheikh,
2010). These applications underscore the versatility
and effectiveness of DES in addressing complex and
dynamic problems across different sectors.

Despite the promising applications of both DES and
VR individually, integrating these technologies has
not yet been fully successful. The combination of DES
and VR could potentially offer enhanced simulation
capabilities by providing immersive and interactive
environments for analyzing complex systems.
However, several challenges hinder this integration.
One significant barrier is the technological limitations
of current VR systems, which lack the necessary
features for seamless integration with DES, thus
limiting their combined potential (Balin et al., 2023).
The interoperability issues between DES software and
VR platforms pose substantial challenges, as most VR
systems are designed primarily for gaming and
entertainment, not for the detailed analytical
processes required in DES (Cook et al., 2019).
Interoperability refers to the ability of different
systems, devices, or applications to work together
within and across organizational boundaries. In the
context of DES and VR, interoperability issues arise
due to differences in data formats, software
platforms, and communication protocols. These
issues can significantly hinder the seamless
integration and effective utilization of combined DES

Jabbour et al. | 3

and VR systems. A significant interoperability issue is
the compatibility of data between DES and VR systems.
DES models often produce detailed and complex data
sets that describe the behavior and interactions of
various system components over time. Translating
this data into a VR environment requires a consistent
and compatible data format that both systems can
interpret and use effectively. However, current VR
platforms may not support the intricate data
structures produced by DES, leading to difficulties in
creating accurate and realistic VR simulations (Turner
et al., 2016). Another major challenge is the
integration of software platforms used for DES and VR.
DES typically relies on specialized simulation
software, such as Arena, Simul8, or AnyLogic, which
have their unique interfaces, data handling methods,
and computational processes. On the other hand, VR
development often involves platforms like Unity or
Unreal Engine, which are designed primarily for
creating interactive and immersive environments.
Bridging the gap between these disparate software
systems requires the development of middleware or
integration frameworks that can facilitate
communication and data exchange between DES and
VR platforms (Balin et al., 2023). The integration of
DES and VR also necessitates the use of robust
communication protocols to ensure smooth and real-
time data exchange. DES models often run complex
simulations that can generate large volumes of data at
high speeds. Transferring this data to a VR
environment in real-time without significant latency
or data loss is a considerable technical challenge.
Existing communication protocols may not be
optimized for such high-performance requirements,
leading to delays, synchronization issues, and reduced
simulation accuracy (Webster & Kourkoulakou, 2022).

To address interoperability issues between
heterogeneous components, standardization efforts
are essential and a shift towards Distributed
Simulation (DS) has been recognized as essential
(Gorecki et al., 2020, 2021). For instance, initiatives
like the IEEE HLA standard for modeling and
simulation provide guidelines for creating
interoperable simulation systems, which can be
extended to include VR integration (IEEE Xplore,
2010). The adoption of HLA standard facilitates time

synchronization and communication between
heterogeneous components, ensuring coherent
parallel operation (Possik, Zacharewicz, et al., 2023;
Possik et al., 2018, 2019).

Practical examples of integrated DES and VR
systems highlight both the potential benefits and
interoperability challenges. For example, in the
healthcare sector, integrating DES models of patient
flow with VR-based training simulations can provide
a more comprehensive understanding of hospital
operations. However, these projects often encounter
issues related to data translation and real-time
synchronization, underscoring the need for robust
interoperability solutions (Tokgöz et al., 2022). In
addition, previous literature highlights that the
integration of DES and VR is highly resource-
demanding, particularly when both systems fully
reproduce a real environment and operate in parallel,
including architecture, resources, agents, and process
flows in both environments(Possik, Asgary, et al.,
2023; Possik et al., 2021, 2022). This approach requires
extremely powerful servers to handle the simulations
effectively. Furthermore, users often encounter
significant slowdowns when using VR headsets, which
hampers the overall performance and usability of the
system. Jabbour et al. (2023) presented a novel
approach to integration aimed at addressing the
aforementioned challenges. The integration
strategies detailed in their work significantly enhance
the feasibility and practicality of such systems,
ensuring improved performance and optimized
resource management. This paper builds upon the
conceptualization and approach presented in Possik et
al. (2022) by implementing HLA layers for each of the
DES and VR components to ensure HLA compatibility
and resolve interoperability issues. It presents a
simple process flow to demonstrate the feasibility of
the proposed approach, accompanied by a
performance comparison to showcase the
effectiveness of the DS system. The following section
outlines the systematic approach adopted, detailing
the tools, frameworks, and methodologies leveraged
to achieve seamless integration, thereby ensuring a
robust and scalable solution for simulation in VR
environments.

4 | 23rd International Conference on Modelling and Applied Simulation, MAS 2024

3. Materials and Methods

The need for interoperability among heterogeneous
simulation components is addressed by the IEEE High-
Level Architecture, a distributed simulation standard.
HLA enables multi-model development, data
exchange, interoperability, reuse, and communication
with external systems. This section introduces the
process of synchronous simulation using HLA with
JaamSim and Unity.

The first version of HLA was HLA US DoD 1.3
developed within the department of defense of the
united states, later adopted by IEEE in 2000 as HLA
IEEE 1516. It was revised and updated in 2010, leading
to HLA Evolved. The upcoming version, HLA 4, soon to
be released, will introduce new system modeling and
safety-related functions. HLA supports the
development of DS by creating simulations composed
of various components, called "federates." A federation
includes multiple federates, a runtime infrastructure
(RTI), and a federated object model (FOM). The RTI
provides standardized services for data exchange,
synchronization, and management, while the FOM
defines the objects and interaction classes used for
communication.

3.1. HLA mechanism

HLA facilitates modeling compatibility and model
reuse. Models can run on separate computers with
different operating systems and programming
languages, distributed across a LAN or WAN. These
components are unified in a federation, where a
publish/subscribe (p/s) mechanism based on FOM and
HLA objects management enables data exchange

among federates.

In this study, we utilized JaamSim 2024-04, Unity
2022.3, and the HLA Evolved version to develop a robust
system architecture that integrates DES with VR
technologies. The architecture aims to seamlessly
connect JaamSim, known for its flexibility in modeling
complex systems, with Unity, a leading VR
development platform, to create an advanced
simulation environment. The PRTI library of the High-
Level Architecture (HLA) standard was employed to
address the challenges of interoperability and data
synchronization. By implementing custom adapters
and interfaces, we enabled effective communication
between JaamSim and Unity, ensuring that simulation
data and user interactions were accurately
synchronized. This integration facilitates a cohesive
federation execution model managed by the PRTI
library, providing a scalable and reliable framework for
complex simulations. Through this approach, we were
able to leverage the strengths of both JaamSim and
Unity, paving the way for more immersive and effective
simulation applications.

Upon execution, JaamSim operates as a black-box
simulator, encapsulating its internal mechanisms
while providing outputs based solely on its input
parameters. To integrate JaamSim into the HLA
framework, we developed a specialized interface that
ensures compatibility with HLA standards. This
interface functions by wrapping JaamSim's native
execution environment, facilitating the translation of
simulation data into HLA-compliant formats. It
handles the registration of JaamSim objects and
interactions with the Runtime Infrastructure (RTI)
using the PRTI library. The interface also manages data
exchange, subscribing to and publishing attribute
updates and interactions as specified in the Federation
Object Model (FOM). Through this approach, JaamSim

Figure 1. HLA standard: communication and interaction between federates

Jabbour et al. | 5

can seamlessly communicate and synchronize with
other federates within the HLA federation, thereby
enhancing interoperability and ensuring coordinated
simulation operations across diverse platforms.

The integration of JaamSim and Unity using the PRTI
library of the HLA involves several technical
components and steps. Here, we provide a detailed
technical explanation of how the PRTI library
facilitates this integration.

Figure 1 illustrates the flowchart of the system
initialization process, encompassing federation
creation, publication and subscription, data exchange,
interactions, and error handling. Each of these
processes is detailed below.

3.1.1. Federation creation and joining

Both JaamSim and Unity federates are configured to
initialize and join a federation, as shown in Figure 2.

Figure 2. HLA pRTI Federation

This involves connecting to the RTI (implemented
using the Java PRTI library), creating a federation
execution environment, and joining the federation as
federates. Figure 3 outlines the procedure for
connecting federates to an HLA federation. Each
federate (JaamSim and Unity) follows these steps to
join the federation, specifying the FOM, an XML file
that defines the structure of the federation.

Input: federateName, federationName
Output: federateHandle
Function
FederateJoinFederation (federateName, federationName):
 federateHandle = PRTI_Connect()
 PRTI_JoinFederation (federateHandle, federateName,
federationName)
 return federateHandle

Figure 3. Algorithm 1: Federate Join Federation

3.1.2. Federation object model

The FOM includes definitions for object classes,
interaction classes, attributes, and parameters that
federates will use to exchange information. As shown in
Figure 4, to enable the movement of agents within the
VR environment, the simulation environment is
configured to send entities as classes. Each entity class
includes attributes such as type, index, next

destination, and action. Conversely, the VR
environment sends interaction messages to the
simulation environment. These messages include
ActionDone, sent when an action is completed in the VR
environment, and ArrivedDestination, sent when an
agent reaches its destination, allowing the simulation
to continue.

Figure 4. HLA FOM configuration

3.1.3. Publication and subscription

All the aforementioned attributes and parameters are
configured as publish/subscribe (ps) attributes and
parameters. For the entities, the simulation publishes
the attributes (Type, Index, NestDestination, and
Action), and the VR environment subscribes to these
attributes to receive updates. For the messages, the VR
environment publishes the parameters (ActionDone
and ArrivedAtDestination), and the simulation
subscribes to them to adapt accordingly.

Input: federateHandle, objectClassName, attributes
Output: None
Function PublishSubscribeObjectClass(federateHandle,
objectClassName, attributes):
 PRTI_PublishObjectClass(federateHandle,
objectClassName, attributes)
 PRTI_SubscribeObjectClass(federateHandle,
objectClassName, attributes)

Figure 5. Algorithm 2: PublishSubscribeObjectClass

Figure 5 shows the function that explains how to
assign the objects and attributes to each federate
handle, specifying whether those attributes are to be
published by this federate or subscribed to. The same
algorithm should be followed to define the
publish/subscribe configurations for interactions and
parameters.

3.1.4. Data exchange and synchronization

In this DS system, JaamSim acts as the simulation
engine, creating and managing the simulation data.
The data is structured as objects with specific attributes
or interactions with defined parameters, which are
then communicated to the RTI. The RTI serves as a
middleware that facilitates data exchange between
JaamSim and Unity. Unity, functioning as the 3D
visualization engine, receives the simulation data from
the RTI and updates the VR environment based on the
information provided by the RTI. This process ensures
that the virtual environment accurately reflects the

6 | 23rd International Conference on Modelling and Applied Simulation, MAS 2024

current state of the simulation. Moreover, Unity
collects and sends back relevant data to the RTI, which
JaamSim requires to continue its simulation processes.
This feedback loop includes information such as the
status of actions performed within the VR
environment. The time management mechanism of
HLA has been disabled in this configuration.
Consequently, the RTI does not manage the
synchronization of events over simulated time.
Instead, data published to the RTI is instantly
disseminated to all federates that have subscribed to
receive it, ensuring real-time updates across the
system.

Figure 7 ensures that when an object’s attributes are
updated by one federate, those changes are reflected to
other federates that are subscribed to that object’s
updates. This maintains consistency and
synchronization of object states across the simulation.
Figure 8 enables federates to send interactions to one
another, facilitating communication and coordination
within the simulation. For instance, one federate might
send an interaction indicating an event, such as “action
done”, which other federates then receive and act upon.

The function UpdateAttributes calls
PRTI_UpdateAttributes(federateHandle,
objectInstanceHandle, attributes), which updates the
attributes of the specified object instance in the PRTI.
The function ReflectAttributes calls
PRTI_GetAttributeUpdates(federateHandle), which
retrieves the updated attributes for the specified
federate from the PRTI and returns reflectedAttributes,
which contain the updated attributes that have been
received.

Similarly to the previous process, the function
SendInteraction calls
PRTI_SendInteraction(federateHandle, interactionClass,

parameters), which sends the specified interaction and
its parameters to the PRTI. The function
ReceiveInteraction calls
PRTI_GetInteractionParameters(federateHandle), which
retrieves any interaction parameters intended for the
specified federate from the PRTI and returns
receivedParameters, which contain the parameters of
the received interaction.

Input: federateHandle, objectInstanceHandle, attributes
Output: reflectedAttributes
Function UpdateAttributes(federateHandle,
objectInstanceHandle, attributes):
 PRTI_UpdateAttributes(federateHandle,
objectInstanceHandle, attributes)

Function ReflectAttributes(federateHandle):
 reflectedAttributes =
PRTI_GetAttributeUpdates(federateHandle)
 return reflectedAttributes

Figure 7. Algorithm 3: UpdateReflectAttributes

Input: federateHandle, interactionClass, parameters
Output: receivedParameters
Function SendInteraction(federateHandle,
interactionClass, parameters):
 PRTI_SendInteraction(federateHandle,
interactionClass, parameters)
Function ReceiveInteraction(federateHandle):
 receivedParameters =
PRTI_GetInteractionParameters(federateHandle)
 return receivedParameters

Figure 8. Algorithm 4: SendReceiveInteraction

3.1.5. Error handling and scalability

Both JaamSim and Unity implement mechanisms to
detect and resolve synchronization issues, data
inconsistencies, and communication failures.
Robustness is ensured through logging and retry
mechanisms, as shown in the function HandleError of
Figure 9.

Figure 6. BPMN Process flow of the DES

Jabbour et al. | 7

Input: operation
Output: success
Function HandleError(operation):
Try:
 operation()
 success = True
Except Exception as e:
 LogError(e)
 success = False
 return success

Figure 9. Algorithm 5: ErrorHandling

3.2. DES and VR environments

In this section, the functionalities of the DS platform
are discussed through a simple process flow to
demonstrate the feasibility and effectiveness of this
architecture and integration. Figure 10 shows the VR
environment (Unity 3D) where agents move according
to the DES (JaamSim) process flow. The example
involves an entry point, a reception area, and three
processing rooms. The process represented in Figure 6
begins with the generation of a client, who is assigned
an index and directed to the reception area. Upon
arrival, the client undergoes a check-in process.
Following this, the client is randomly assigned to one
of the three processing rooms. An assistant is then
assigned to guide the client to the designated room and
initiate the processing phase. After escorting the client
and starting the processing, the assistant is released
and returns to the reception to assist other clients. The
client continues the processing independently. Once
the processing is completed, the client exits the system.

Figure 10. VR environment

In JaamSim, clients are simulation entities designed
to represent individuals generated by entity generators
and processed within the simulation. Each client is
assigned a list of key attributes that define their
identity and behavior: Type, Index, NextDestination,
and Action.

• The index assigned to a client is a unique identifier
that remains constant and unchangeable
throughout the simulation. This helps in tracking
and referencing the client.

• Unlike the index, the next destination and action

for a client are dynamic and updated at different
stages based on the model's logic. The next
destination could be another location or process
the client needs to move to, while the action
specifies what the client will do upon reaching the
destination.

The Seize component manages the allocation of
resources to entities as they progress through the
simulation. After clients receive their attributes, they
often need to acquire specific resources (assistants) to
proceed with their tasks. The Seize component
allocates an assistant from the assistant's resource
pool. When a client reaches the Seize component, it
requests an assistant. If an assistant is available, the
client seizes the resource and continues to the next
step. If no assistants are available, the client must wait
until one becomes free. Clients perform their tasks
assisted by the allocated assistant resources. Upon task
completion, clients release the resources back to the
assistant’s resource pool using the Release component,
making them available for other clients.

Subsequently, clients arrive at a decision point
managed by the Branch component. At this point
clients are routed to one of three possible destinations,
such as Room1, Room2, or Room3. The routing decision
is based on a discrete probability distribution that can
be adjusted based on the simulation needs. Finally,
entities reach the end of their journey in the simulation
at the EntitySink endpoint component. These
EntitySink components represent the conclusion of the
entities' lifecycle within the simulation, where they are
removed from the system.

Table 1. HLA attributes

Attributes

Type 1. Clients

2. Assistants

Index Assigned automatically by the system

Next Destination 0. Stay in place

1. Reception

2. Room1

3. Room2

4. Room3

5. Exit

Actions 0. No action

1. Get checked in

2. Processing Room 1

3. Processing Room 2

4. Processing Room 3

5. Assist Client

6. Exit

Table 1 lists the attributes used to construct this
simulation case. These attributes play distinct roles in
guiding the simulation entities (clients) through their
workflows in both simulation and VR environments.

8 | 23rd International Conference on Modelling and Applied Simulation, MAS 2024

Table 2. Communication process between the DES and VR environments

A G E N T A R R A Y

T
yp

e

In
de

x

N
ex

t
D

es
ti

n
at

io
n

A
ct

io
n

S I M U L A T I O N V I R T U A L R E A L I T Y

1 0 0 0
1: Client; 0: No Index; 0: No Next Destination; 0: No Action

Client: Generate Entity Type 1
Client: Generate Entity Type 1 (Client)

1 1 1 0
1: Client; 1: Index; 1: Reception; 0: No Action

 Client: Assign index: 1 (Client 1)
Client 1: Assign next destination: Reception

 Client 1: Go to Reception
Send Arrived at Destination message

1 1 0 1
1: Client; 1: Index; 0: No Next Destination; 1: Get Checked in

Client 1: Assign Action: “Get Checked in”

 Client 1: Get checked in
Client 1: Send Action Done message

2 1 3 0
2: Assistant; 1: Index; 3: Room 2; 0: No Action

(Seize Assistant)
Assistant 1: Assign next destination: “Room 2”

1 1 3 0
1: Client; 1: Index; 3: Room 2; 0: Get Checked in
Client 1: Assign next destination: “Room 2”

Client 1: Go to “Room 2”
Assistant 1: Go to “Room 2”
Client 1: Send Arrived at Destination message
Assistant 1: Send Arrived at Destination message

1 1 0 2
1: Client; 1: Index; 0: No Next Destination; 2: Processing Room 2

Client 1: Assign Action: Processing “Room 2”

2 1 0 5
2: Assistant; 1: Index; 0: No Next Destination; 5: Assist Client
Assistant 1: Assign Action: Assist Client

Client 1: Processing in “Room 2”
Assistant 1: Assist Client
Assistant 1: Send Action Done message

2 1 1 0
2: Assistant; 1: Index; 1: Reception; 0: No Action

 Assistant 1: Assign next destination: Reception
(Release Assistant)

 Assistant 1: Go back to reception
Client 1: Send Action Done message

1 1 5 0
1: Client; 1: Index; 5: Exit; 0: No Action

Client 1: Assign next destination: Exit

 Client 1: Go to Exit
Client 1: Send Arrived at Destination message

1 1 0 6
1: Client; 1: Index; 0: No Next Destination; 6: Exit
Client 1: Assign Action: Exit

 Client 1: Exit
Client 1: Send Action Done message

Type attribute identifies the kind of entity involved,
such as a client or assistant. For instance, "1: Client"
signifies that the entity is a client. Index provides a
unique identifier for each entity, ensuring that each
client or assistant can be individually tracked
throughout the process. For example, "1: Index" refers
to the first client. Next Destination specifies the
upcoming location where the entity needs to go. It
directs the entity to the appropriate area, such as "1:
Reception" indicating the client should go to the
reception, or "3: Room 2" directing them to Room 2.
Action defines the specific task the entity must perform
at its current or next location. For instance, "1: Get
Checked in" means the client needs to complete the
check-in process, and "2: Processing Room 2"
indicates that the client should begin processing in
Room 2.

The process presented in Table 2 begins by
generating a client (Type 1) with no initial index,
destination, or action. The client is then assigned an
index (1) to be identified during the simulation,
directed to the reception (Next Destination: 1), and
instructed to go there.

Upon arrival, the client sends an "Arrived at
Destination" message. At the reception, the client is
assigned the action "Get Checked in" (Action: 1). Once
checked in, the client sends an "Action Done" message.
The client is then directed to Room 2 (Next Destination:
3) along with an assistant. Both the client and the
assistant proceed to Room 2 and send arrival messages.
In Room 2, the client begins processing (Action: 2),
while the assistant assists the client (Action: 5). Once
their tasks are completed, the assistant sends an

Jabbour et al. | 9

"Action Done" message and returns to the reception.
The client finishes processing, sends an "Action Done"
message, and is directed to exit the system (Next
Destination: 5). Finally, the client exits and sends a
completion message.

This detailed process flow highlights the seamless
interaction between the DES model and the VR
environment, showcasing the strengths of the
integrated system. The next section will delve into the
results and discussion, providing insights into the
advantages of this approach and integration.

4. Results and Discussion

The integration of JaamSim and Unity, as
demonstrated in Figure 11, showcases the synergy
between DES and VR environments. Figure 11 illustrates
the JaamSim simulation on the left, where the detailed
simulation logic and process flow are defined, and the
Unity 3D environment on the right, where agents are
visualized performing their respective tasks. JaamSim
handles the detailed event-based modeling, where
each client (agent) is generated, assigned tasks, and
guided through various stages such as check-in and
processing. The Unity 3D environment brings the
simulation to life by providing a visual and immersive
representation of the JaamSim model. Figure 11 shows
two agents (clients) moving through rooms and
performing tasks as directed by the DES, enhancing
user engagement and understanding by visualizing the
simulation in a realistic setting. This VR environment
makes the simulation more intuitive and accessible,
allowing users to see the agents interact with their
surroundings, thereby improving comprehension and
engagement.

In the context of exchanged messages between DES
and VR, the approach proposed in this paper achieves a
constant rate of 18 messages per client cycle, which
starkly contrasts with the previous methodologies that
required 24 messages per second per agent throughout
the process. This discrepancy means that, within the
initial second, the previous approaches already surpass
the 18 messages required by the new methodology.
Moreover, the new approach decouples the message
volume from the process duration, which can vary
widely depending on the case study; from minutes to
days or even weeks. This independence implies that, for
two individuals (a client and an assistant) moving
within the simulation environment, the number of
messages per cycle remains unchanged. Quantitatively,

within the first ten minutes of the simulation, the
previous methodologies exceed 14,000 messages,
while the new approach maintains a much lower
volume of approximately 160 messages as shown in
Figure 12.

Figure 12. Comparison of the volume of transmitted messages

The integrated system serves as an effective training
tool. Trainees can immerse themselves in the VR
environment, gaining a deeper understanding of the
simulation process through hands-on, interactive
experiences. This immersive approach significantly
enhances retention and comprehension. Additionally,
decision-makers can leverage the VR environment to
test various scenarios, observe outcomes, and make
well-informed decisions. The real-time visualization
of different strategies' impacts substantially improves
decision-making capabilities.

Traditional integration methods often require
extensive data transfers to replicate environments,
which can be resource-intensive and heavily reliant on
network performance. Our integration approach,
coupled with efficient resource management,
minimizes unnecessary data exchanges and reduces
dependency on network and server performance,
resulting in a more robust and scalable system.

5. Conclusions

In conclusion, the integration of DES and VR
technologies presents a significant opportunity to
enhance simulation capabilities across various
domains. By leveraging the strengths of both
technologies, we can create more immersive and
interactive simulation environments that offer deeper
insights and improved outcomes. This paper has
demonstrated the feasibility and effectiveness of
integrating JaamSim, a robust DES tool, with Unity, a
leading VR development platform, using the HLA
standard to address interoperability and
synchronization challenges. Our integration
framework overcomes the traditional issues of
resource consumption seen in older integrations,
which relied heavily on sending numerous messages to
replicate an exact environment in both DES and VR.
This previous method was highly dependent on

 Figure 11. JaamSim/Unity 3D

10 | 23rd International Conference on Modelling and Applied Simulation, MAS 2024

network and server performance, leading to
inefficiencies. By utilizing our approach of integration
and the HLA standard, we have mitigated these issues,
ensuring a more efficient and scalable solution.

Looking forward, several key areas require further
research and development to fully realize the potential
of integrated DES and VR systems. Testing our platform
with real case studies in sectors such as manufacturing,
healthcare, and others will provide practical insights
and help identify domain-specific challenges.
Enhanced testing with VR headsets and controllers in
larger, more complex case studies will assess the
system's performance and ensure its scalability and
reliability. Incorporating complex behaviors and
decision-making capabilities into the VR agents is
crucial for creating more realistic and nuanced
simulations. Customizing integrated DES and VR
systems to meet the unique requirements of different
industries, such as healthcare, manufacturing, and
logistics, will enhance their effectiveness and adoption.
Finally, enhancing the user experience in VR
environments by improving interactivity and realism is
vital for training and operational simulations,
providing users with more engaging and effective tools.
By addressing these areas, we can advance the
integration of DES and VR technologies, paving the way
for more advanced, immersive, and effective
simulation environments. These developments have
the potential to transform how we approach complex
problem-solving and training across multiple sectors,
ultimately leading to better outcomes and more
efficient processes.

Funding

This research was supported by the Agence Nationale
de la Recherche (ANR) under the DemoES - PEIA
project (ANR-21-DMES-0014). We would like to extend
our sincere gratitude to the ANR for their financial
support. Their funding has been instrumental in the
successful execution of this project.

References

Abu-Taieh, E. and El-Sheikh, A. (2010). Handbook of
Research on Discrete Event Simulation Environments:
Technologies and Applications. IGI Global.
https://doi.org/10.4018/978-1-60566-774-4

Balin, S., Bolognesi, C. M., and Borin, P. (2023).
Integration of Immersive Approaches for
Collaborative Processes with Building Information
Modeling (BIM) Methodology for the AEC Industry:
An Analysis of the Current State and Future
Challenges. Virtual Worlds, 2(4), Article 4.
https://doi.org/10.3390/virtualworlds2040022

Cook, M., Lischer-Katz, Z., Hall, N., Hardesty, J.,
Johnson, J., McDonald, R., and Carlisle, T. (2019).
Challenges and Strategies for Educational Virtual
Reality. Information Technology and Libraries, 38:
25–48. https://doi.org/10.6017/ital.v38i4.11075

Gorecki, S., Possik, J., Zacharewicz, G., Ducq, Y., and
Perry, N. (2020). A Multicomponent Distributed
Framework for Smart Production System Modeling
and Simulation. Sustainability, 12(17), Article 6969.
https://doi.org/10.3390/su12176969

Gorecki, S., Possik, J., Zacharewicz, G., Ducq, Y., and
Perry, N. (2021). Business Models for Distributed-
Simulation Orchestration and Risk Management.
Information, 12(2), Article 71.
https://doi.org/10.3390/info12020071

Halbig, A., Babu, S. K., Gatter, S., Latoschik, M. E.,
Brukamp, K., and von Mammen, S. (2022).
Opportunities and Challenges of Virtual Reality in
Healthcare – A Domain Experts Inquiry. Frontiers in
Virtual Reality, 3, Article 837616.
https://doi.org/10.3389/frvir.2022.837616

Hamad, A. and Jia, B. (2022). How Virtual Reality
Technology Has Changed Our Lives: An Overview of
the Current and Potential Applications and
Limitations. International Journal of Environmental
Research and Public Health, 19(18), Article 11278.
https://doi.org/10.3390/ijerph191811278

IEEE Xplore (2010). IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)—
Framework and Rules. Retrieved from
https://ieeexplore.ieee.org/document/STD96061

JaamSim (2024). JaamSim - Discrete-Event Simulation
Software. Retrieved from
https://www.jaamsim.com/

Jabbour, J., Possik, J., Yaacoub, C., Solis, A. O., Kieken,
D., Sobanski, T., and Zacharewicz, G. (2023).
Synergistic Fusion of Simulation and Virtual
Reality: A Proposed New Approach for Collaborative
Integration. Proceedings of the 22nd International
Conference on Modeling and Applied Simulation (MAS
2023), Athens, Greece, September 18-20, 2023,
Paper 023:1-8.
https://doi.org/10.46354/i3m.2023.mas.023

LinkedIn (2024). How can you use discrete-event
simulation to plan logistics better? Retrieved from
https://www.linkedin.com/advice/1/how-can-
you-use-discrete-event-simulation-1e

MathWorks (2024). Applications of Discrete Event
Simulation in the Aerospace and Defense Industry.
Retrieved from
https://www.mathworks.com/videos/applications-
of-discrete-event-simulation-in-the-aerospace-
and-defense-industry-81569.html

Possik, J., Amrani, A., and Zacharewicz, G. (2018).
Development of a co-simulation system as a
decision-aid in Lean tools implementation. Summer
Simulation Multiconference.
https://doi.org/10.22360/SUMMERSIM.2018.SCSC.037

Possik, J., Asgary, A., Solis, A. O., Zacharewicz, G.,
Shafiee, M. A., Najafabadi, M. M., Nadri, N.,
Guimaraes, A., Iranfar, H., Ma, P., Lee, C. M.,

Jabbour et al. | 11

Tofighi, M., Aarabi, M., Gorecki, S., and Wu, J.
(2023). An Agent-Based Modeling and Virtual
Reality Application Using Distributed Simulation:
Case of a COVID-19 Intensive Care Unit. IEEE
Transactions on Engineering Management, 70(8):
2931–2943.
https://doi.org/10.1109/TEM.2022.3195813

Possik, J., Azar, D., Solis, A. O., Asgary, A., Zacharewicz,
G., Karami, A., Tofighi, M., Najafabadi, M., Shafiee,
M. A., Merchant, A. A., Aarabi, M., and Wu, J. (2022).
A distributed digital twin implementation of a
hemodialysis unit aimed at helping prevent the
spread of the Omicron COVID-19 variant.
Proceedings of the IEEE/ACM 26th International
Symposium on Distributed Simulation and Real Time
Applications (DS-RT 2022), 168–174.
https://doi.org/10.1109/DS-RT55542.2022.9932047

Possik, J., D’Ambrogio, A., Zacharewicz, G., Amrani, A.,
and Vallespir, B. (2019). A BPMN/HLA-Based
Methodology for Collaborative Distributed DES.
Proceedings of the IEEE 28th International Conference
on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2019), 118–123.
https://doi.org/10.1109/WETICE.2019.00033

Possik, J., Gorecki, S., Asgary, A., Solis, A. O.,
Zacharewicz, G., Tofighi, M., Shafiee, M. A.,
Merchant, A. A., Aarabi, M., Guimaraes, A., and
Nadri, N. (2021). A Distributed Simulation Approach
to Integrate AnyLogic and Unity for Virtual Reality
Applications: Case of COVID-19 Modelling and
Training in a Dialysis Unit. Proceedings of the
IEEE/ACM 25th International Symposium on
Distributed Simulation and Real Time Applications
(DS-RT 2021), virtual conference, September 2021,
1–7. https://doi.org/10.1109/DS-
RT52167.2021.9576149

Possik, J., Zacharewicz, G., Zouggar, A., and Vallespir,
B. (2023). HLA-based time management and
synchronization framework for lean manufacturing
tools evaluation. Simulation, 99(4): 347–362.
https://doi.org/10.1177/00375497221132577

Radianti, J., Majchrzak, T. A., Fromm, J., and
Wohlgenannt, I. (2020). A systematic review of
immersive virtual reality applications for higher
education: Design elements, lessons learned, and
research agenda. Computers & Education, 147, Article
103778.
https://doi.org/10.1016/j.compedu.2019.103778

Tokgöz, P., Stampa, S., Wähnert, D., Vordemvenne, T.,
and Dockweiler, C. (2022). Virtual Reality in the
Rehabilitation of Patients with Injuries and Diseases
of Upper Extremities. Healthcare, 10(6), Article 1124.
https://doi.org/10.3390/healthcare10061124

Turner, C. J., Hutabarat, W., Oyekan, J., and Tiwari, A.
(2016). Discrete Event Simulation and Virtual
Reality Use in Industry: New Opportunities and
Future Trends. IEEE Transactions on Human-

Machine Systems, 46(6): 882–894.
https://doi.org/10.1109/THMS.2016.2596099

Unity (2024). Unity Real-Time Development Platform |
3D, 2D, VR & AR Engine. Retrieved from
https://unity.com/

Vázquez-Serrano, J. I., Peimbert-García, R. E., and
Cárdenas-Barrón, L. E. (2021). Discrete-Event
Simulation Modeling in Healthcare: A
Comprehensive Review. International Journal of
Environmental Research and Public Health, 18(22),
Article 12262.
https://doi.org/10.3390/ijerph182212262

Wainer, G. and Mosterman, P. (2016). Discrete-Event
Modeling and Simulation: Theory and Applications.
In Discrete-Event Modeling and Simulation: Theory
and Applications (p. 493).
https://doi.org/10.1201/9781315218731

Webster, C. and Kourkoulakou, S. (2022). Composing in
virtual immersion: Avatar and representation.
Hybrid. Revue des arts et médiations humaines, 9.
https://doi.org/10.4000/hybrid.2968

Wilson, C. J. and Soranzo, A. (2015). The Use of Virtual
Reality in Psychology: A Case Study in Visual
Perception. Computational and Mathematical
Methods in Medicine, 2015, Article 151702.
https://doi.org/10.1155/2015/151702

	1. Introduction
	2. State of the art
	3. Materials and Methods
	4. Results and Discussion
	5. Conclusions

