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Abstract 

This paper explores the integration of Discrete Event Simulation (DES) and Virtual Reality (VR) technologies, focusing on 
JaamSim and Unity. By combining the strengths of both, we aim to enhance simulation capabilities across various domains. The 
integration leverages the High-Level Architecture (HLA) IEEE standard to address interoperability and synchronization 
challenges. This approach mitigates resource consumption issues seen in traditional methods that rely on extensive data 
transfers, which are dependent on network and server performance. Our integrated system provides an immersive and interactive 
environment that improves user engagement and decision-making. It allows trainees to better understand complex processes 
through hands-on VR experiences and enables decision-makers to visualize the impacts of different strategies in real-time. This 
approach maintains a constant rate of messages per client cycle, irrespective of the simulation length, unlike previous methods 
that heavily depended on the process duration. 
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1. Introduction 

The rapid advancement of technology has ushered in an 
era where innovative tools are increasingly being 
utilized across various domains to enhance efficiency, 
understanding, and performance. Among these tools, 
Virtual Reality (VR) and Discrete Event Simulation 
(DES) stand out due to their transformative potential. 
VR, with its ability to create immersive and interactive 
environments, has found applications in sectors 

ranging from healthcare to education, offering 
significant improvements in training, therapy, and 
learning outcomes. DES, on the other hand, excels in 
modeling and analyzing complex systems, providing 
valuable insights that aid in optimizing processes 
across logistics, manufacturing, and healthcare. 

This paper explores the current state of VR and DES 
technologies, their individual applications, and the 
existing challenges in their integration. It aims to 
provide a comprehensive overview of the benefits that 
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such integration could bring to various sectors, 
alongside a detailed examination of the barriers that 
need to be overcome. By addressing these challenges, 
the paper seeks to contribute to the ongoing efforts in 
developing robust and scalable solutions that leverage 
the strengths of both VR and DES, ultimately paving the 
way for more advanced and effective simulation 
environments. In this paper, we specifically address the 
integration of JaamSim, a DES tool, with Unity, a 
leading platform for VR development. JaamSim is an 
open-source simulation software known for its 
flexibility and comprehensive set of features for 
modeling complex systems (JaamSim, 2024). Unity, on 
the other hand, is a widely used game development 
engine that offers extensive capabilities for creating 
immersive VR experiences (Unity, 2024). The 
integration of these two platforms presents significant 
challenges, particularly in terms of data exchange and 
synchronization. To overcome the interoperability 
hurdles inherent in combining these distinct 
technologies, the High-Level Architecture (HLA) IEEE 
standard is utilized. It is designed to facilitate 
interoperability and reusability of simulation 
components across diverse platforms (IEEE, 2010). 
HLA provides a framework that allows simulations to 
communicate and operate together within a common 
environment, making it an ideal choice for integrating 
JaamSim and Unity.  

This paper is organized as follows: Section 2 
provides a comprehensive literature review on the 
individual applications and benefits of VR and DES 
technologies, as well as the barriers to integrating both 
technologies. Section 3 outlines the materials and 
methods used in integrating JaamSim with Unity, 
detailing the tools, frameworks, and methodologies 
employed. Section 4 presents the results and discusses 
the advantages of the integrated system, highlighting 
its effectiveness in enhancing performance, user 
engagement,  and decision-making. Section 5 covers 
the conclusion and perspectives, including future 
research directions such as testing with real case 
studies, incorporating reinforcement learning, adding 
behaviors to agents, and enhancing user experience in 
VR environments. Finally, Section 6 acknowledges the 
contributions and funding sources that supported this 
research. 

2. State of the art 

VR has been increasingly integrated into various 
domains, demonstrating significant benefits across 
multiple sectors. For instance, in healthcare, VR 
provides immersive training environments, 
enhancing the realism and effectiveness of medical 
training (Halbig et al., 2022). Similarly, VR 
applications in psychology enable the creation of 
three-dimensional facsimiles of real objects, 
facilitating better psychological studies and 
treatments (Wilson & Soranzo, 2015). In the realm of 
education, VR's immersive capabilities have been 

leveraged to create engaging and effective learning 
environments, improving students' understanding 
and retention of complex subjects (Radianti et al., 
2020). The technological advancements in VR have 
also been beneficial in fields like manufacturing and 
logistics, where VR aids in better planning and 
operational efficiency (LinkedIn, 2024). The 
aerospace and defense industries have adopted VR to 
simulate complex scenarios and training exercises, 
enhancing preparedness and performance 
(MathWorks, 2024). Moreover, public health and 
wellness sectors utilize VR for therapeutic purposes, 
offering new ways to support mental health and 
physical rehabilitation (Hamad & Jia, 2022).  

On the other hand, DES has proven to be a versatile 
tool in modeling and analyzing complex systems 
across various domains. Its applications in logistics 
and manufacturing have enabled better planning and 
optimization of processes (LinkedIn, 2024). In 
aerospace and defense, DES helps in modeling 
intricate systems and evaluating different operational 
strategies (MathWorks, 2024). The healthcare sector 
benefits from DES by using it to model patient flows 
and optimize resource allocation, improving overall 
efficiency (Vázquez-Serrano et al., 2021). 
Additionally, the theoretical foundations and practical 
applications of DES are well-documented, providing a 
robust framework for researchers and practitioners 
(Wainer & Mosterman, 2016; Abu-Taieh & El-Sheikh, 
2010). These applications underscore the versatility 
and effectiveness of DES in addressing complex and 
dynamic problems across different sectors.  

Despite the promising applications of both DES and 
VR individually, integrating these technologies has 
not yet been fully successful. The combination of DES 
and VR could potentially offer enhanced simulation 
capabilities by providing immersive and interactive 
environments for analyzing complex systems. 
However, several challenges hinder this integration. 
One significant barrier is the technological limitations 
of current VR systems, which lack the necessary 
features for seamless integration with DES, thus 
limiting their combined potential (Balin et al., 2023). 
The interoperability issues between DES software and 
VR platforms pose substantial challenges, as most VR 
systems are designed primarily for gaming and 
entertainment, not for the detailed analytical 
processes required in DES (Cook et al., 2019). 
Interoperability refers to the ability of different 
systems, devices, or applications to work together 
within and across organizational boundaries. In the 
context of DES and VR, interoperability issues arise 
due to differences in data formats, software 
platforms, and communication protocols. These 
issues can significantly hinder the seamless 
integration and effective utilization of combined DES 
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and VR systems. A significant interoperability issue is 
the compatibility of data between DES and VR systems. 
DES models often produce detailed and complex data 
sets that describe the behavior and interactions of 
various system components over time. Translating 
this data into a VR environment requires a consistent 
and compatible data format that both systems can 
interpret and use effectively. However, current VR 
platforms may not support the intricate data 
structures produced by DES, leading to difficulties in 
creating accurate and realistic VR simulations (Turner 
et al., 2016). Another major challenge is the 
integration of software platforms used for DES and VR. 
DES typically relies on specialized simulation 
software, such as Arena, Simul8, or AnyLogic, which 
have their unique interfaces, data handling methods, 
and computational processes. On the other hand, VR 
development often involves platforms like Unity or 
Unreal Engine, which are designed primarily for 
creating interactive and immersive environments. 
Bridging the gap between these disparate software 
systems requires the development of middleware or 
integration frameworks that can facilitate 
communication and data exchange between DES and 
VR platforms (Balin et al., 2023). The integration of 
DES and VR also necessitates the use of robust 
communication protocols to ensure smooth and real-
time data exchange. DES models often run complex 
simulations that can generate large volumes of data at 
high speeds. Transferring this data to a VR 
environment in real-time without significant latency 
or data loss is a considerable technical challenge. 
Existing communication protocols may not be 
optimized for such high-performance requirements, 
leading to delays, synchronization issues, and reduced 
simulation accuracy (Webster & Kourkoulakou, 2022).  

To address interoperability issues between 
heterogeneous components, standardization efforts 
are essential and a shift towards Distributed 
Simulation (DS) has been recognized as essential 
(Gorecki et al., 2020, 2021). For instance, initiatives 
like the IEEE HLA standard for modeling and 
simulation provide guidelines for creating 
interoperable simulation systems, which can be 
extended to include VR integration (IEEE Xplore, 
2010). The adoption of HLA standard facilitates time 

synchronization and communication between 
heterogeneous components, ensuring coherent 
parallel operation (Possik, Zacharewicz, et al., 2023; 
Possik et al., 2018, 2019).  

Practical examples of integrated DES and VR 
systems highlight both the potential benefits and 
interoperability challenges. For example, in the 
healthcare sector, integrating DES models of patient 
flow with VR-based training simulations can provide 
a more comprehensive understanding of hospital 
operations. However, these projects often encounter 
issues related to data translation and real-time 
synchronization, underscoring the need for robust 
interoperability solutions (Tokgöz et al., 2022). In 
addition, previous literature highlights that the 
integration of DES and VR is highly resource-
demanding, particularly when both systems fully 
reproduce a real environment and operate in parallel, 
including architecture, resources, agents, and process 
flows in both environments(Possik, Asgary, et al., 
2023; Possik et al., 2021, 2022). This approach requires 
extremely powerful servers to handle the simulations 
effectively. Furthermore, users often encounter 
significant slowdowns when using VR headsets, which 
hampers the overall performance and usability of the 
system. Jabbour et al. (2023) presented a novel 
approach to integration aimed at addressing the 
aforementioned challenges. The integration 
strategies detailed in their work significantly enhance 
the feasibility and practicality of such systems, 
ensuring improved performance and optimized 
resource management. This paper builds upon the 
conceptualization and approach presented in Possik et 
al. (2022) by implementing HLA layers for each of the 
DES and VR components to ensure HLA compatibility 
and resolve interoperability issues. It presents a 
simple process flow to demonstrate the feasibility of 
the proposed approach, accompanied by a 
performance comparison to showcase the 
effectiveness of the DS system. The following section 
outlines the systematic approach adopted, detailing 
the tools, frameworks, and methodologies leveraged 
to achieve seamless integration, thereby ensuring a 
robust and scalable solution for simulation in VR 
environments.
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3. Materials and Methods 

The need for interoperability among heterogeneous 
simulation components is addressed by the IEEE High-
Level Architecture, a distributed simulation standard. 
HLA enables multi-model development, data 
exchange, interoperability, reuse, and communication 
with external systems. This section introduces the 
process of synchronous simulation using HLA with 
JaamSim and Unity.  

The first version of HLA was HLA US DoD 1.3 
developed within the department of defense of the 
united states, later adopted by IEEE in 2000 as HLA 
IEEE 1516. It was revised and updated in 2010, leading 
to HLA Evolved. The upcoming version, HLA 4, soon to 
be released, will introduce new system modeling and 
safety-related functions. HLA supports the 
development of DS by creating simulations composed 
of various components, called "federates." A federation 
includes multiple federates, a runtime infrastructure 
(RTI), and a federated object model (FOM). The RTI 
provides standardized services for data exchange, 
synchronization, and management, while the FOM 
defines the objects and interaction classes used for 
communication. 

3.1. HLA mechanism 

HLA facilitates modeling compatibility and model 
reuse. Models can run on separate computers with 
different operating systems and programming 
languages, distributed across a LAN or WAN. These 
components are unified in a federation, where a 
publish/subscribe (p/s) mechanism based on FOM and 
HLA objects management enables data exchange 

among federates.  

In this study, we utilized JaamSim 2024-04, Unity 
2022.3, and the HLA Evolved version to develop a robust 
system architecture that integrates DES with VR 
technologies. The architecture aims to seamlessly 
connect JaamSim, known for its flexibility in modeling 
complex systems, with Unity, a leading VR 
development platform, to create an advanced 
simulation environment. The PRTI library of the High-
Level Architecture (HLA) standard was employed to 
address the challenges of interoperability and data 
synchronization. By implementing custom adapters 
and interfaces, we enabled effective communication 
between JaamSim and Unity, ensuring that simulation 
data and user interactions were accurately 
synchronized. This integration facilitates a cohesive 
federation execution model managed by the PRTI 
library, providing a scalable and reliable framework for 
complex simulations. Through this approach, we were 
able to leverage the strengths of both JaamSim and 
Unity, paving the way for more immersive and effective 
simulation applications.  

Upon execution, JaamSim operates as a black-box 
simulator, encapsulating its internal mechanisms 
while providing outputs based solely on its input 
parameters. To integrate JaamSim into the HLA 
framework, we developed a specialized interface that 
ensures compatibility with HLA standards. This 
interface functions by wrapping JaamSim's native 
execution environment, facilitating the translation of 
simulation data into HLA-compliant formats. It 
handles the registration of JaamSim objects and 
interactions with the Runtime Infrastructure (RTI) 
using the PRTI library. The interface also manages data 
exchange, subscribing to and publishing attribute 
updates and interactions as specified in the Federation 
Object Model (FOM). Through this approach, JaamSim 

Figure 1. HLA standard: communication and interaction between federates 



Jabbour et al. | 5 
 

 
can seamlessly communicate and synchronize with 
other federates within the HLA federation, thereby 
enhancing interoperability and ensuring coordinated 
simulation operations across diverse platforms.  

The integration of JaamSim and Unity using the PRTI 
library of the HLA involves several technical 
components and steps. Here, we provide a detailed 
technical explanation of how the PRTI library 
facilitates this integration.  

Figure 1 illustrates the flowchart of the system 
initialization process, encompassing federation 
creation, publication and subscription, data exchange, 
interactions, and error handling. Each of these 
processes is detailed below. 

3.1.1. Federation creation and joining 

Both JaamSim and Unity federates are configured to 
initialize and join a federation, as shown in Figure 2.  

 
Figure 2. HLA pRTI Federation 

This involves connecting to the RTI (implemented 
using the Java PRTI library), creating a federation 
execution environment, and joining the federation as 
federates. Figure 3 outlines the procedure for 
connecting federates to an HLA federation. Each 
federate (JaamSim and Unity) follows these steps to 
join the federation, specifying the FOM, an XML file 
that defines the structure of the federation. 

Input: federateName, federationName  
Output: federateHandle  
Function  
FederateJoinFederation (federateName, federationName):  
    federateHandle = PRTI_Connect()  
    PRTI_JoinFederation (federateHandle, federateName, 
federationName)  
    return federateHandle  

Figure 3. Algorithm 1: Federate Join Federation 

3.1.2. Federation object model 

The FOM includes definitions for object classes, 
interaction classes, attributes, and parameters that 
federates will use to exchange information. As shown in 
Figure 4, to enable the movement of agents within the 
VR environment, the simulation environment is 
configured to send entities as classes. Each entity class 
includes attributes such as type, index, next 

destination, and action. Conversely, the VR 
environment sends interaction messages to the 
simulation environment. These messages include 
ActionDone, sent when an action is completed in the VR 
environment, and ArrivedDestination, sent when an 
agent reaches its destination, allowing the simulation 
to continue. 

 
Figure 4. HLA FOM configuration 

3.1.3. Publication and subscription 

All the aforementioned attributes and parameters are 
configured as publish/subscribe (ps) attributes and 
parameters. For the entities, the simulation publishes 
the attributes (Type, Index, NestDestination, and 
Action), and the VR environment subscribes to these 
attributes to receive updates. For the messages, the VR 
environment publishes the parameters (ActionDone 
and ArrivedAtDestination), and the simulation 
subscribes to them to adapt accordingly.  

Input: federateHandle, objectClassName, attributes  
Output: None  
Function PublishSubscribeObjectClass(federateHandle, 
objectClassName, attributes):  
    PRTI_PublishObjectClass(federateHandle, 
objectClassName, attributes)  
    PRTI_SubscribeObjectClass(federateHandle, 
objectClassName, attributes) 

Figure 5. Algorithm 2: PublishSubscribeObjectClass 

Figure 5 shows the function that explains how to 
assign the objects and attributes to each federate 
handle, specifying whether those attributes are to be 
published by this federate or subscribed to. The same 
algorithm should be followed to define the 
publish/subscribe configurations for interactions and 
parameters. 

3.1.4. Data exchange and synchronization 

In this DS system, JaamSim acts as the simulation 
engine, creating and managing the simulation data. 
The data is structured as objects with specific attributes 
or interactions with defined parameters, which are 
then communicated to the RTI. The RTI serves as a 
middleware that facilitates data exchange between 
JaamSim and Unity. Unity, functioning as the 3D 
visualization engine, receives the simulation data from 
the RTI and updates the VR environment based on the 
information provided by the RTI. This process ensures 
that  the  virtual   environment   accurately  reflects  the
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current state of the simulation.  Moreover, Unity 
collects and sends back relevant data to the RTI, which 
JaamSim requires to continue its simulation processes. 
This feedback loop includes information such as the 
status of actions performed within the VR 
environment. The time management mechanism of 
HLA has been disabled in this configuration. 
Consequently, the RTI does not manage the 
synchronization of events over simulated time. 
Instead, data published to the RTI is instantly 
disseminated to all federates that have subscribed to 
receive it, ensuring real-time updates across the 
system.  

Figure 7 ensures that when an object’s attributes are 
updated by one federate, those changes are reflected to 
other federates that are subscribed to that object’s 
updates. This maintains consistency and 
synchronization of object states across the simulation. 
Figure 8 enables federates to send interactions to one 
another, facilitating communication and coordination 
within the simulation. For instance, one federate might 
send an interaction indicating an event, such as “action 
done”, which other federates then receive and act upon. 

The function UpdateAttributes calls 
PRTI_UpdateAttributes(federateHandle, 
objectInstanceHandle, attributes), which updates the 
attributes of the specified object instance in the PRTI. 
The function ReflectAttributes calls 
PRTI_GetAttributeUpdates(federateHandle), which 
retrieves the updated attributes for the specified 
federate from the PRTI and returns reflectedAttributes, 
which contain the updated attributes that have been 
received.   

Similarly to the previous process, the function 
SendInteraction calls 
PRTI_SendInteraction(federateHandle, interactionClass, 

parameters), which sends the specified interaction and 
its parameters to the PRTI. The function 
ReceiveInteraction calls 
PRTI_GetInteractionParameters(federateHandle), which 
retrieves any interaction parameters intended for the 
specified federate from the PRTI and returns 
receivedParameters, which contain the parameters of 
the received interaction.  

Input: federateHandle, objectInstanceHandle, attributes  
Output: reflectedAttributes  
Function UpdateAttributes(federateHandle, 
objectInstanceHandle, attributes):  
    PRTI_UpdateAttributes(federateHandle, 
objectInstanceHandle, attributes)  
 
Function ReflectAttributes(federateHandle):  
    reflectedAttributes = 
PRTI_GetAttributeUpdates(federateHandle)  
    return reflectedAttributes 

Figure 7. Algorithm 3: UpdateReflectAttributes 

 
Input: federateHandle, interactionClass, parameters  
Output: receivedParameters  
Function SendInteraction(federateHandle, 
interactionClass, parameters):  
    PRTI_SendInteraction(federateHandle, 
interactionClass, parameters)  
Function ReceiveInteraction(federateHandle):  
    receivedParameters = 
PRTI_GetInteractionParameters(federateHandle)  
    return receivedParameters 

Figure 8. Algorithm 4: SendReceiveInteraction 

3.1.5. Error handling and scalability 

Both JaamSim and Unity implement mechanisms to 
detect and resolve synchronization issues, data 
inconsistencies, and communication failures. 
Robustness is ensured through logging and retry 
mechanisms, as shown in the function HandleError of 
Figure 9. 

 

Figure 6. BPMN Process flow of the DES 
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Input: operation  
Output: success  
Function HandleError(operation):  
Try:  
     operation()  
     success = True  
Except Exception as e:  
     LogError(e)  
     success = False  
    return success 

Figure 9. Algorithm 5: ErrorHandling 

3.2. DES and VR environments 

In this section, the functionalities of the DS platform 
are discussed through a simple process flow to 
demonstrate the feasibility and effectiveness of this 
architecture and integration. Figure 10 shows the VR 
environment (Unity 3D) where agents move according 
to the DES (JaamSim) process flow. The example 
involves an entry point, a reception area, and three 
processing rooms. The process represented in Figure 6 
begins with the generation of a client, who is assigned 
an index and directed to the reception area. Upon 
arrival, the client undergoes a check-in process. 
Following this, the client is randomly assigned to one 
of the three processing rooms. An assistant is then 
assigned to guide the client to the designated room and 
initiate the processing phase. After escorting the client 
and starting the processing, the assistant is released 
and returns to the reception to assist other clients. The 
client continues the processing independently. Once 
the processing is completed, the client exits the system. 

 
Figure 10. VR environment 

In JaamSim, clients are simulation entities designed 
to represent individuals generated by entity generators 
and processed within the simulation. Each client is 
assigned a list of key attributes that define their 
identity and behavior: Type, Index, NextDestination, 
and Action.  

• The index assigned to a client is a unique identifier 
that remains constant and unchangeable 
throughout the simulation. This helps in tracking 
and referencing the client. 

• Unlike the index, the next destination and action 

for a client are dynamic and updated at different 
stages based on the model's logic. The next 
destination could be another location or process 
the client needs to move to, while the action 
specifies what the client will do upon reaching the 
destination. 

The Seize component manages the allocation of 
resources to entities as they progress through the 
simulation. After clients receive their attributes, they 
often need to acquire specific resources (assistants) to 
proceed with their tasks. The Seize component 
allocates an assistant from the assistant's resource 
pool. When a client reaches the Seize component, it 
requests an assistant. If an assistant is available, the 
client seizes the resource and continues to the next 
step. If no assistants are available, the client must wait 
until one becomes free. Clients perform their tasks 
assisted by the allocated assistant resources. Upon task 
completion, clients release the resources back to the 
assistant’s resource pool using the Release component, 
making them available for other clients. 

Subsequently, clients arrive at a decision point 
managed by the Branch component. At this point 
clients are routed to one of three possible destinations, 
such as Room1, Room2, or Room3. The routing decision 
is based on a discrete probability distribution that can 
be adjusted based on the simulation needs. Finally, 
entities reach the end of their journey in the simulation 
at the EntitySink endpoint component. These 
EntitySink components represent the conclusion of the 
entities' lifecycle within the simulation, where they are 
removed from the system.  

Table 1. HLA attributes 

Attributes 

Type 1. Clients 

2. Assistants 

Index Assigned automatically by the system 

Next Destination 0. Stay in place 

1. Reception 

2. Room1 

3. Room2 

4. Room3 

5. Exit 

Actions 0. No action 

1. Get checked in 

2. Processing Room 1 

3. Processing Room 2 

4. Processing Room 3 

5. Assist Client 

6. Exit 

Table 1 lists the attributes used to construct this 
simulation case. These attributes play distinct roles in 
guiding the simulation entities (clients) through their 
workflows  in  both  simulation  and  VR  environments. 
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Table 2. Communication process between the DES and VR environments 

A G E N T   A R R A Y  
 

T
yp

e 

In
de

x 

N
ex

t 
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es
ti

n
at

io
n

 

A
ct

io
n

 

S I M U L A T I O N V I R T U A L   R E A L I T Y 

1 0 0 0 
1: Client; 0: No Index; 0: No Next Destination; 0: No Action 

Client: Generate Entity Type 1 
Client: Generate Entity Type 1 (Client) 

1 1 1 0 
1: Client; 1: Index; 1: Reception; 0: No Action 

 Client: Assign index: 1 (Client 1) 
Client 1: Assign next destination: Reception 

 Client 1: Go to Reception 
Send Arrived at Destination message 

1 1 0 1 
1: Client; 1: Index; 0: No Next Destination; 1: Get Checked in 

 
Client 1: Assign Action: “Get Checked in” 

     Client 1: Get checked in 
Client 1: Send Action Done message 

2 1 3 0 
2: Assistant; 1: Index; 3: Room 2; 0: No Action 

 
(Seize Assistant)  
Assistant 1: Assign next destination: “Room 2” 

1 1 3 0 
1: Client; 1: Index; 3: Room 2; 0: Get Checked in 
Client 1: Assign next destination: “Room 2” 

 

Client 1: Go to “Room 2” 
Assistant 1: Go to “Room 2” 
Client 1: Send Arrived at Destination message 
Assistant 1: Send Arrived at Destination message 

1 1 0 2 
1: Client; 1: Index; 0: No Next Destination; 2: Processing Room 2 

 
Client 1: Assign Action: Processing “Room 2” 

2 1 0 5 
2: Assistant; 1: Index; 0: No Next Destination; 5: Assist Client 
Assistant 1: Assign Action: Assist Client 

 
Client 1: Processing in “Room 2” 
Assistant 1: Assist Client 
Assistant 1: Send Action Done message 

2 1 1 0 
2: Assistant; 1: Index; 1: Reception; 0: No Action 

 Assistant 1: Assign next destination: Reception  
(Release Assistant) 

 Assistant 1: Go back to reception 
Client 1: Send Action Done message 

1 1 5 0 
1: Client; 1: Index; 5: Exit; 0: No Action 

 
Client 1: Assign next destination: Exit 

 Client 1: Go to Exit 
Client 1: Send Arrived at Destination message 

1 1 0 6 
1: Client; 1: Index; 0: No Next Destination; 6: Exit  
Client 1: Assign Action: Exit 

 Client 1: Exit 
Client 1: Send Action Done message 

 

Type attribute identifies the kind of entity involved, 
such as a client or assistant. For instance, "1: Client" 
signifies that the entity is a client. Index provides a 
unique identifier for each entity, ensuring that each 
client or assistant can be individually tracked 
throughout the process. For example, "1: Index" refers 
to the first client. Next Destination specifies the 
upcoming location where the entity needs to go. It 
directs the entity to the appropriate area, such as "1: 
Reception" indicating the client should go to the 
reception, or "3: Room 2" directing them to Room 2. 
Action defines the specific task the entity must perform 
at its current or next location. For instance, "1: Get 
Checked in" means the client needs to complete the 
check-in process, and "2: Processing Room 2" 
indicates that the client should begin processing in 
Room 2. 

The process presented in Table 2 begins by 
generating a client (Type 1) with no initial index, 
destination, or action. The client is then assigned an 
index (1) to be identified during the simulation, 
directed to the reception (Next Destination: 1), and 
instructed to go there. 

Upon arrival, the client sends an "Arrived at 
Destination" message. At the reception, the client is 
assigned the action "Get Checked in" (Action: 1). Once 
checked in, the client sends an "Action Done" message. 
The client is then directed to Room 2 (Next Destination: 
3) along with an assistant. Both the client and the 
assistant proceed to Room 2 and send arrival messages. 
In Room 2, the client begins processing (Action: 2), 
while the assistant assists the client (Action: 5). Once 
their tasks are completed, the assistant sends an 
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"Action Done" message and returns to the reception. 
The client finishes processing, sends an "Action Done" 
message, and is directed to exit the system (Next 
Destination: 5). Finally, the client exits and sends a 
completion message.  

This detailed process flow highlights the seamless 
interaction between the DES model and the VR 
environment, showcasing the strengths of the 
integrated system. The next section will delve into the 
results and discussion, providing insights into the 
advantages of this approach and integration. 

4. Results and Discussion 

The integration of JaamSim and Unity, as 
demonstrated in Figure 11, showcases the synergy 
between DES and VR environments. Figure 11 illustrates 
the JaamSim simulation on the left, where the detailed 
simulation logic and process flow are defined, and the 
Unity 3D environment on the right, where agents are 
visualized performing their respective tasks. JaamSim 
handles the detailed event-based modeling, where 
each client (agent) is generated, assigned tasks, and 
guided through various stages such as check-in and 
processing. The Unity 3D environment brings the 
simulation to life by providing a visual and immersive 
representation of the JaamSim model. Figure 11 shows 
two agents (clients) moving through rooms and 
performing tasks as directed by the DES, enhancing 
user engagement and understanding by visualizing the 
simulation in a realistic setting. This VR environment 
makes the simulation more intuitive and accessible, 
allowing users to see the agents interact with their 
surroundings, thereby improving comprehension and 
engagement.  

In the context of exchanged messages between DES 
and VR, the approach proposed in this paper achieves a 
constant rate of 18 messages per client cycle, which 
starkly contrasts with the previous methodologies that 
required 24 messages per second per agent throughout 
the process. This discrepancy means that, within the 
initial second, the previous approaches already surpass 
the 18 messages required by the new methodology. 
Moreover, the new approach decouples the message 
volume from the process duration, which can vary 
widely depending on the case study; from minutes to 
days or even weeks. This independence implies that, for 
two individuals (a client and an assistant) moving 
within the simulation environment, the number of 
messages per cycle remains unchanged. Quantitatively, 

within the first ten minutes of the simulation, the 
previous methodologies exceed 14,000 messages, 
while the new approach maintains a much lower 
volume of approximately 160 messages as shown in 
Figure 12.  

 
Figure 12. Comparison of the volume of transmitted messages 

The integrated system serves as an effective training 
tool. Trainees can immerse themselves in the VR 
environment, gaining a deeper understanding of the 
simulation process through hands-on, interactive 
experiences. This immersive approach significantly 
enhances retention and comprehension. Additionally, 
decision-makers can leverage the VR environment to 
test various scenarios, observe outcomes, and make 
well-informed decisions. The real-time visualization 
of different strategies' impacts substantially improves 
decision-making capabilities. 

Traditional integration methods often require 
extensive data transfers to replicate environments, 
which can be resource-intensive and heavily reliant on 
network performance. Our integration approach, 
coupled with efficient resource management, 
minimizes unnecessary data exchanges and reduces 
dependency on network and server performance, 
resulting in a more robust and scalable system. 

5. Conclusions 

In conclusion, the integration of DES and VR 
technologies presents a significant opportunity to 
enhance simulation capabilities across various 
domains. By leveraging the strengths of both 
technologies, we can create more immersive and 
interactive simulation environments that offer deeper 
insights and improved outcomes. This paper has 
demonstrated the feasibility and effectiveness of 
integrating JaamSim, a robust DES tool, with Unity, a 
leading VR development platform, using the HLA 
standard to address interoperability and 
synchronization challenges. Our integration 
framework overcomes the traditional issues of 
resource consumption seen in older integrations, 
which relied heavily on sending numerous messages to 
replicate an exact environment in both DES and VR. 
This previous method was highly dependent on 

 Figure 11. JaamSim/Unity 3D  
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network and server performance, leading to 
inefficiencies. By utilizing our approach of integration 
and the HLA standard, we have mitigated these issues, 
ensuring a more efficient and scalable solution. 

Looking forward, several key areas require further 
research and development to fully realize the potential 
of integrated DES and VR systems. Testing our platform 
with real case studies in sectors such as manufacturing, 
healthcare, and others will provide practical insights 
and help identify domain-specific challenges. 
Enhanced testing with VR headsets and controllers in 
larger, more complex case studies will assess the 
system's performance and ensure its scalability and 
reliability. Incorporating complex behaviors and 
decision-making capabilities into the VR agents is 
crucial for creating more realistic and nuanced 
simulations. Customizing integrated DES and VR 
systems to meet the unique requirements of different 
industries, such as healthcare, manufacturing, and 
logistics, will enhance their effectiveness and adoption. 
Finally, enhancing the user experience in VR 
environments by improving interactivity and realism is 
vital for training and operational simulations, 
providing users with more engaging and effective tools. 
By addressing these areas, we can advance the 
integration of DES and VR technologies, paving the way 
for more advanced, immersive, and effective 
simulation environments. These developments have 
the potential to transform how we approach complex 
problem-solving and training across multiple sectors, 
ultimately leading to better outcomes and more 
efficient processes. 
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