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Abstract
This study proposes a novel machine learning (ML)-driven framework for on-site Bubble Point Pressure (BBP) prediction tailored toSudanese crude oil. Given the current disruption of traditional laboratory-based Pressure-Volume-Temperature (PVT) analysis due tothe conflict in Sudan, there is an urgent need for reliable, decentralized solutions within the energy sector. Empirical correlations,though widely used in this context, often provide inaccurate predictions for BBP due to the unique properties of Sudanese crude.In this work, we introduce and evaluate multiple ML models, with a focus on optimizing real-time BBP predictions. Among theevaluated models, the Multi-Layer Perceptron (MLP) and XGBoost demonstrated superior predictive accuracy, with MLP achieving themost significant improvements over traditional empirical methods. This advancement directly addresses the limitations of existingmodels by offering enhanced precision and adaptability. The contribution of this study lies in the development of a field-deployable,ML-powered solution that enables real-time BBP predictions without the need for centralized laboratory infrastructure. This approachnot only ensures continuity of oil analysis & production during the conflict but also provides a robust foundation for post-conflictrecovery, supporting long-term operational and economic resilience in the Sudanese oil sector.
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1. Introduction

1.1. General Context & Motivation

The oil sector has long been a cornerstone of Sudan’s econ-omy, contributing significantly to national revenues. Ac-cording to recent reports, the oil sector accounted for ap-proximately 50% of the government’s income and 95%of export revenues prior to the conflict [3, 24]. Sudan’sannual oil production was approximately 60,000 barrelsper day (bpd) in recent years, down from a peak of 500,000bpd in 2011 due to the secession of South Sudan and subse-

quent loss of major oil fields [23]. Despite this reduction,the oil industry remains vital to the country’s economichealth and future prospects. However, the ongoing con-flict in Sudan has severely disrupted the industry. The warhas impacted critical infrastructure, including processingplants, refineries, and key laboratory infrastructure, mak-ing it nearly impossible to conduct traditional laboratoryanalyses necessary for efficient oil production. As a result,production activities have slowed down, and the sector’soverall contribution to the economy has been significantlyreduced [11]. In addition to the immediate impacts, the
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long-term aftermath of the conflict presents further chal-lenges. Reconstructing damaged infrastructure, particu-larly specialized laboratories, will take considerable timeand resources. In this context, there is a growing demandfor decentralized, field-deployable technologies that canbypass the need for central laboratories. Developing suchsolutions is crucial to sustaining oil production, minimiz-ing the economic impact of the conflict, and supportingthe eventual recovery of Sudan’s oil sector. This work con-tributes by addressing these urgent needs through thedevelopment of a practical solution that can be deployed inthe field, ensuring continuity in crude oil analysis duringand after the conflict.
1.2. Significance of Bubble Point Pressure Estimation

The Bubble Point Pressure (BBP) is a critical parameter incrude oil analysis, representing the pressure at which thefirst bubble of gas forms in a liquid mixture during pres-sure reduction [10]. This pressure signifies the onset of gasliberation from the liquid phase, marking the boundarybetween single-phase liquid and two-phase (liquid-gas)conditions. Theoretical understanding of the bubble pointis essential in reservoir engineering and production oper-ations because it influences key decisions regarding thedevelopment, management, and operations of oil reser-voirs [2]. For instance, maintaining reservoir pressureabove the bubble point can prevent gas breakout, therebyoptimizing oil recovery and maintaining reservoir drive.Accurate knowledge of the BBP also assists in designingsurface separation facilities and managing phase behaviorthroughout the production process, ensuring efficient andsafe handling of the extracted hydrocarbons [14, 22].Traditionally, the BBP can be determined in two ways:through laboratory experiments using Pressure-Volume-Temperature (PVT) tests, or by employing empirical cor-relations that leverage field data [12]. PVT tests are consid-ered the most reliable method but are often costly, time-consuming, and require specific conditions for accuratesampling and analysis [12]. Due to these challenges, em-pirical correlations, like the ones developed by Standing[20], Glaso [9], Al-Marhoun [1], Vasquez-Beggs [25], andPetrosky-Farshad [16], have long been used to estimateBBP, but these methods often rely on generalized datasetsthat fail to account for the unique properties of local crudeoils. This can lead to inaccurate predictions, which in turnmay result in inefficient production practices and costlyoperational errors. Therefore, In war-affected regions likeSudan, where access to traditional laboratory-based PVTanalysis is limited, accurate field-based BBP prediction isparticularly valuable.
2. Literature Review

2.1. Empirical Correlations for BBP Estimation

Over the decades, various empirical correlations have beendeveloped to simplify BBP estimation without the need

for extensive laboratory testing. These correlations, builtupon large datasets from specific regions and crude oiltypes, offer practical solutions but also come with limita-tions, particularly when applied to diverse crude oil com-positions.
One of the earliest and most influential correlations wasintroduced by Standing in 1947 [20]. Standing’s modelutilized key variables such as the solution Gas-Oil Ratio(GOR), gas-specific gravity (SG gas), oil-specific gravity(SG oil), and reservoir temperature to estimate BBP. Hiswork, based on data from Californian crude oils, quicklygained widespread adoption due to its straightforwardapproach and its utility for light and medium crude oils.Building upon this foundation, Glaso extended the appli-cability of Standing’s method by incorporating additionalcomplexities to better account for higher API gravitiesand pressures in the North Sea region [9]. This exten-sion helped to capture more nuanced behavior in Pressure-Volume-Temperature (PVT) data, particularly for crudeoils with a broader range of physical characteristics. Rec-ognizing the need for more region-specific correlations,Al-Marhoun developed a method in 1988 that focused onMiddle Eastern crude oils [1]. His correlation employedsimilar variables as Standing and Glaso but tailored theparameters to accommodate the higher viscosities and dis-tinct properties of regional crude oils. This allowed opera-tors in the Middle East to make more accurate BBP predic-tions without relying on empirical data from other regions.In contrast to these region-specific models, the Vasquez-Beggs correlation aimed for a more universally applica-ble method by segregating crude oils based on their APIgravity. This approach provided greater accuracy for low-gravity oils, which are often underrepresented in datasetsused for previous correlations [25]. Petrosky and Farshadlater improved upon this idea by focusing specifically onheavy oils, incorporating variables such as reservoir tem-perature, solution GOR, and oil gravity to optimize predic-tions for heavier crude oil types [16].

2.2. ML Models for BBP Prediction

With the limitations of empirical correlations, machinelearning (ML) techniques began gaining traction for theirability to capture non-linear relationships in PVT data.Early models such as Support Vector Regression (SVR) andArtificial Neural Networks (ANNs) showed potential butstruggled with sparse data and limited extrapolation ca-pabilities [27]. Building on these initial efforts, hybridmodels that integrated multiple algorithms, like ParticleSwarm Optimization (PSO) and Multiple Extreme Learn-ing Machines (MELM), demonstrated superior predictionaccuracy [17, 13], particularly in handling field data. Moreadvanced neurocomputing models, including MultilayerPerceptron (MLP) and Radial Basis Function (RBF), fur-ther improved the handling of high-dimensional, complexdatasets [8]. Recent advancements in ensemble learningand deep learning models, such as XGBoost, LightGBM,
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and random forests, have further pushed the boundaries ofBBP prediction. These models, leveraging compositionaldata and robust cross-validation, have achieved superiorpredictive accuracy [7, 21].While significant progress has been made, there re-mains a gap in applying these advanced techniques to spe-cific crude oils, such as Sudanese crude, which possessunique properties not fully captured by global datasets.This study aims to bridge that gap by applying and opti-mizing these advanced machine learning techniques forSudanese crude oil, contributing to both the local industryand the broader field of BBP prediction.
3. Methodology

3.1. BBP Estimation in the Lab setting

To accurately determine the BBP of crude oil in the labsetting, a series of carefully controlled experimental pro-cedures are conducted, typically involving the use of a PVTcell as demonstrated in Figure 1.As demonstrated in Figure 2, the experimental setupbegins with the collection of a representative sample ofreservoir fluid, which is introduced into the PVT cell. Thiscell is capable of withstanding the high pressures and tem-peratures required to simulate reservoir conditions. Thefirst step in the experimentation process is to heat the sam-ple to the reservoir temperature, ensuring that the fluidmimics the in-situ state as closely as possible. Follow-ing this, the pressure in the PVT cell is gradually reduced

in a controlled manner. As the pressure decreases, thevolume of the fluid is carefully monitored. This phase ofthe experiment involves observing the point at which thefirst gas bubble forms, which is the BBP. The formation ofthe gas bubble indicates the pressure at which the liquidphase begins to separate into gas and liquid phases. To en-sure accuracy, the experiment is repeated multiple times,and additional parameters such as temperature, oil andgas volumes, and pressure are recorded throughout theprocess. The collected data, including pressure-volumerelationships and density values, is then analyzed to deter-mine the BBP accurately. The process involves plotting thepressure-volume data to identify the characteristic pointwhere the slope changes, marking the onset of gas bubbleformation. This rigorous experimental approach ensuresthat the determined BBP is reliable and representative ofthe actual reservoir conditions, thereby aiding in accuratereservoir management and fluid characterization.
3.2. Data Modeling

The dataset used for this experimentation represents anaggregation from various Sudanese oil wells. For eachwell, the physical characteristics of the crude oil are es-timated in the field, providing crucial insights into thethermodynamic behavior of the oil. To estimate the BBPaccurately, the dataset includes measurements from 217different wells. These measurements capture a range ofconditions and compositions, forming a robust basis forML modeling and prediction. The following input parame-

Figure 1. Pressure Volum Temprature (PVT) Cell
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Figure 2. Experimental Steps for Determining the BBP in Lab Settings

ters are crucial for understanding the phase behavior andBBP of crude oil:
• Temperature (T◦R): Measured in Rankine, this param-eter is vital as it directly influences the fluid’s thermo-dynamic state. The temperature of the crude oil at reser-voir conditions is a key determinant of phase changes.• Gas-Oil Ratio (GOR): This is a measure of the volumeof gas that can be dissolved in a unit volume of oil atspecific temperature and pressure conditions. GOR pro-vides insight into the fluid’s capacity to release gas asthe pressure decreases, which is critical for BBP deter-mination.• Specific Gravity of Gas (SG gas): This is the ratio ofthe density of the gas phase to the density of air at stan-dard conditions. It reflects the molecular compositionof the gas, influencing how the gas interacts with theoil phase.• Specific Gravity of Oil (SG oil): The density of the oilphase compared to water density, which helps charac-terize the heaviness or lightness of the crude oil. Varia-tions in SG oil can affect the BBP as different composi-tions might react differently under pressure changes.

The dataset captures a wide array of samples, each iden-tified by a unique well number, which ensures that themodeling accounts for variability across different geo-graphical and geological settings. This diversity is essen-tial for developing models that can generalize well to newdata. To gain deeper insights into the dataset, the Boxplots in Figure 3 are used to visually represent the data,highlighting the central tendencies, spread, and presenceof any outliers that might influence the modeling process.

Figure 3. Input Variables for BBP Prediction

3.3. ML Experimentation

In this study, a ML framework was employed to predictthe BBP of Sudanese crude oil, incorporating advancedregression techniques and model optimization strategies.The workflow guiding this experimentation, as depictedin Figure 4, outlines the major stages from data collec-tion and preprocessing through to model evaluation andcomparison with traditional empirical correlations.

Figure 4. ML Workflow for Predicting Sudanese Oil BBP

3.3.1. Data Collection and PreprocessingThe raw dataset used in this study consisted of 217 wells,with features extracted to characterize the physical andthermodynamic properties of the crude oil. The target vari-able for prediction was the Measured BBP, representinglaboratory-determined values for each reservoir sample.Data preprocessing involved two key steps:
1. Outlier Removal: The Interquartile Range (IQR)method was employed to detect and eliminate extremeoutliers from the dataset [26], ensuring that anomalousdata points would not skew the ML models.2. Standardization: Features were standardized usingthe StandardScaler to ensure that all input variables had a
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mean of 0 and a standard deviation of 1 [15].
3.3.2. Model Selection andHyperparameter OptimizationTo ensure the most robust and accurate predictions, fourdifferent, widely used, regression models were selectedbased on their ability to handle nonlinear relationships andtheir popularity in tabular datasets. which makes themparticularly relevant for the building a predictive modelon BBP of Sudanese crude oil:
1. Linear Regression (Baseline): A basic linear modelwas employed as a baseline for comparison [19].2. Random Forest Regressor: An ensemble method capa-ble of capturing complex nonlinear relationships by con-structing multiple decision trees [4].3. Support Vector Regressor (SVR): A model capable ofhandling high-dimensional feature spaces using kerneltricks [5].4. XGBoost Regressor: An advanced boosting algorithmknown for its high predictive accuracy in structureddatasets [6].5. Multi-Layer Perceptron (MLP): A neural networkmodel, optimized to capture complex patterns in the data[18].
Each model was trained and optimized using Grid-SearchCV to identify the best hyperparameters for eachalgorithm. For Random Forest, SVR, XGBoost, and MLP, a5-fold cross-validation was used to avoid overfitting andimprove the generalization of the models. Table 1 depictsthe hyperparameters tuned for each model.
3.3.3. Model Training&EvaluationThe models were trained on 80% of the data, with theremaining 20% reserved for testing. Training was con-ducted using the optimal hyperparameters determinedthrough the cross-validation process. The models werethen evaluated on the unseen test set to gauge their gen-eralization capability. The evaluation was carried out us-ing several regression performance metrics. Root MeanSquared Error (RMSE) was used to assess the average mag-nitude of prediction errors, where larger errors are pe-nalized more heavily. Mean Absolute Error (MAE) wascalculated to provide an overall measure of error magni-tude without exaggerating large errors. The Mean Abso-lute Percentage Error (MAPE) was computed to show thepercentage-based prediction error, useful for comparingmodel performance across different scales. Finally, theR² (coefficient of determination) was used to measure theproportion of variance explained by the model, indicatinghow well the predictions fit the actual data.
4. Results
Figure 5 shows the distributions of the input features af-ter preprocessing, including Temperature, Gas-Oil Ra-tio (GOR), Specific Gravity of Gas (SG gas), and SpecificGravity of Oil (SG oil). These variables are key to under-

Table 1. Hyperparameters for each machine learning model.
Model Hyperparameter Values Considered
Random Forest Regressor n_estimators [100, 200, 300]max_depth [10, 20, 30]
SVR C [0.1, 1, 10]kernel [’linear’, ’rbf’]
XGBoost Regressor n_estimators [100, 200, 300]learning_rate [0.01, 0.1, 0.2]max_depth [3, 5, 7]
MLP hidden_layer_sizes [(128, 64, 32), (100,50), (256, 128, 64)]activation [’relu’]alpha [0.0001, 0.001, 0.01]learning_rate [’constant’,’adaptive’]learning_rate_init [0.001, 0.01]

Hyperparameters were optimized using 5-fold cross-validation via GridSearchCV.

standing the physical and thermodynamic properties ofthe crude oil, and their distribution characteristics provideinsight into the dataset’s complexity. The Temperaturedistribution is approximately normal, with most valuesclustered around the mean, suggesting that the majorityof wells have similar temperature conditions. In contrast,the GOR exhibits a right-skewed distribution, indicatingthat most wells have low gas content, with fewer wellsshowing higher GOR values. The SG gas presents a widerspread and multimodal tendencies, reflecting variabilityin gas compositions across the sampled wells. Finally, SGoil shows a bimodal distribution, pointing to the presenceof both lighter and heavier crude oil samples.

Figure 5. Post-processing Input Variable’s Distribution

4.1. Performance of ML Models

The performance of each model was assessed using keyregression metrics, including RMSE, MAE, MAPE, andthe R². The results for each model are shown in Table 2,highlighting the significant differences in performance
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across the various techniques employed. Figure 6 demon-strates that all the different ML models has a reasonablepredictability of the BBP.The Linear Regression model, serving as a baseline,produced an R² of 0.8610 and an RMSE of 170.92. Whileit captured some of the underlying relationships betweenthe input variables and BBP, its relatively high RMSE andmoderate R² indicate that the linear model struggled withthe nonlinearity in the data.In contrast, Random Forest showed marked improve-ment, with an R² of 0.8937 and a reduced RMSE of 149.49.This model, by leveraging the power of ensemble learning,was able to better capture complex patterns within thedataset. The optimized hyperparameters for the RandomForest model, including a depth of 20 and 200 estimators,allowed for greater model flexibility without overfitting.The SVR, while effective in some cases, did not perform aswell on this dataset. With an R² of 0.8146 and the highestRMSE among the machine learning models (197.39), SVR’slinear kernel struggled to adequately model the nonlinear-ity present. Despite optimization, the SVR results suggestthat a nonlinear kernel or alternative regression techniquemight have been better suited for this task. XGBoost, onthe other hand, was one of the top-performing models,achieving an R² of 0.9181 and an RMSE of 131.15. XGBoost’sability to iteratively refine its predictions through boostingallowed it to capture more intricate relationships betweenthe input features and BBP. The tuned hyperparameters,including a learning rate of 0.2 and a maximum depth of 5,provided an optimal balance between learning efficiencyand model complexity. The MLP achieved the best overall

performance, with an R² of 0.9229 and the lowest RMSE at127.26. The deep learning architecture of the MLP enabledit to model highly nonlinear relationships between thefeatures and the target variable, particularly benefitingfrom the ReLU activation function and its multilayer struc-ture. However, its slightly higher MAE (95.57) comparedto XGBoost suggests that while MLP was very accurateon average, it may have produced larger errors in certaininstances.Overall, the results highlight the superior performanceof advanced models such as XGBoost and MLP, which wereable to effectively capture the nonlinear dynamics of thedataset. These models outperformed the more traditionalmethods like Linear Regression and SVR, particularly interms of RMSE and R², making them highly suitable forpredicting BBP in this context.
4.2. Residual Analysis for ML & Empirical Correlation

Figure 7 shows the residuals for the two best-performingmachine learning models (XGBoost and MLP) com-pared with the empirical correlations (Standing, Glasos,Marhouns, and Petrosky-Farshads). Residuals representthe difference between actual and predicted BBP, withsmaller residuals indicating better model performance.XGBoost exhibits the tightest residual distributionaround zero, demonstrating the highest predictive accu-racy, followed by MLP. Both models show a concentrationof errors near zero, suggesting fewer large deviations andmore reliable predictions. In contrast, the empirical cor-relations show much larger and more dispersed residu-

Figure 6. Scattered Plot (Predicted BBP VS Actual BBP)
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Table 2. Performance comparison between ML models and Empirical Correlations for BBP Prediction.
Model RMSE MAE MAPE R² Best Parameters / Empirical Model
Linear Regression 170.92 119.68 0.4703 0.8610 N/ARandom Forest 149.49 98.41 0.3112 0.8937 max_depth: 20, n_estimators: 200SVR 197.39 142.08 0.3716 0.8146 C: 10, kernel: linear
XGBoost 131.15 88.16 0.2674 0.9181 learning_rate: 0.2, max_depth: 5, n_estimators: 100
MLP 127.26 95.57 0.3629 0.9229 activation: relu, alpha: 0.0001, hidden_layer_sizes: (128, 64,32),learning_rate: constant, learning_rate_init: 0.001Standing 199.26 119.59 0.5521 0.8432 Empirical ModelGlasos 183.44 126.65 0.4944 0.8671 Empirical ModelMarhouns 232.98 149.32 0.8558 0.7857 Empirical ModelPetrosky-Farshads 913.07 845.45 11.7003 –2.2918 Empirical Model

Machine learning models were trained and evaluated using GridSearchCV for hyperparameter tuning. Empirical models were evaluated directly based on their performance on the
dataset.

Figure 7. Residuals Comparison for XGBoost, MLP, and Empirical Correla-tions

als, particularly for Petrosky-Farshads, which has a no-table bias and high variance, indicating poor generaliza-tion to the data. Marhouns also exhibits wide residuals,while Standing and Glasos correlations, although better,still show greater error spread compared to XGBoost andMLP. This analysis highlights the superior performanceof machine learning models, particularly XGBoost, overtraditional empirical correlations, which tend to have lessreliable predictions for BBP in Sudanese crude oil.
5. Discussion

The results of this study demonstrate the clear superior-ity of machine learning models, particularly XGBoost andMLP, over traditional empirical correlations in predictingBBP for Sudanese crude oil. XGBoost achieved an R² of0.9181 with an RMSE of 131.15, while MLP performed evenbetter, with an R² of 0.9229 and an RMSE of 127.26, high-lighting the ability of these models to capture the complex,nonlinear relationships in the data. In contrast, empiricalmodels such as Standing, Glasos, and Marhouns exhib-ited significantly larger residuals, with Petrosky-Farshadsperforming the worst due to its limited applicability tothe unique characteristics of Sudanese crude oil. Thesefindings underscore the potential of advanced ML mod-

els in providing more accurate, real-time BBP predictionsin the field, making them well-suited for deployment inresource-constrained environments.
In this study, the MLP model was selected to power thedeveloped on-site BBP prediction application due to itssuperior performance in capturing complex, nonlinear re-lationships in the Sudanese crude oil data. As shown inFigure 8, the app interface enables field engineers to in-put key reservoir parameters—Temperature, GOR, SG gas,and SG oil—with the predicted BBP displayed instantly.This real-time capability facilitates critical decisions with-out requiring laboratory facilities.

Figure 8. Interface for On-Site BBP Prediction APP

The ongoing conflict in Sudan has made conventionallaboratory testing difficult, with key infrastructures oftenbeing inaccessible or destroyed. In this context, the on-site application addresses an urgent need for decentralizedtools that allow oil producers to continue operations. Theapp enables users to gather essential data in the field andgenerate accurate BBP predictions, bypassing the logis-tical challenges of transporting samples to central labs,which are either damaged or too far away. Looking ahead,this tool will also play a crucial role in post-war recovery.Rebuilding laboratory facilities can take years, but with
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this on-site solution, the industry can maintain momen-tum and avoid unnecessary downtime. The application’sportability and accessibility ensure that it can be deployedin remote areas or under challenging conditions, provid-ing vital support for the continuity of oil production andreservoir management. The on-site BBP prediction ap-plication contributes to resilience in the face of adversity.It provides an adaptive solution that not only addressescurrent limitations caused by the war but also positionsthe industry for a smoother post-conflict recovery.
6. Conclusion

This study demonstrates how ML models, particularly theMLP model, significantly improve the accuracy of BBPpredictions of Sudanese crude compared to traditional em-pirical correlations. The superior performance of ML mod-els, validated through various metrics, highlights theirpotential in addressing the challenges of BBP estimation,especially in regions affected by war, where conventionallaboratory facilities are either unavailable or inaccessible.By providing a resilient on-site solution, this research un-derscores the importance of innovation in sustaining oilproduction and reservoir management during and afterconflict.Looking to the future, there are considerable opportu-nities for advancing this model. Incorporating deeper neu-ral networks, such as Long Short-Term Memory (LSTM)networks or more recent architectures like TabNet, couldfurther enhance prediction accuracy by capturing moreintricate patterns within the data. These advancementsmay provide even more robust solutions, particularly whendealing with large-scale, real-time datasets. Moreover,integrating the on-site BBP application with sensor tech-nology opens new possibilities for real-time, automaticBBP estimation within an Internet of Things (IoT) frame-work. This integration would enable continuous monitor-ing of reservoir conditions, facilitating more responsiveand data-driven decision-making in the field, thereby op-timizing production and reducing downtime in both con-flict and post-war recovery phases. This approach pavesthe way for a more resilient, adaptive oil sector that canthrive even in the most challenging environments
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