
   
 

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 
 

1 

 
  

 
   

 

Stress-Driven Simulation model in Polar Coordinates: 
The Analytical case for Circular Plates 

Roberto Cianci1, Agostino G. Bruzzone1,*, Roberta Sburlati1 and Mohamadreza 
Jafarinezhad1 

1 University of Genoa, Italy 

* Corresponding author. Email address: agostino@itim.unige.it 
 
 

Abstract 
This study aims to analyze a circular plate with specific characteristics. The plate has an outer radius and thickness (h). An 
approach is introduced to simulate the stress-driven theory based on Kirchhoff plate assumptions. The differential equations 
for the circular plate are obtained in Cartesian coordinates and then moved to polar coordinates. When R is going to infinity, the 
equation is solved analytically. We found that the displacement on the lateral surface is depending by the nonlocal parameter , 
while resultant moments are unaffected. A finite element solution is presented by using the Galerkin technique, for the case of a 
solid circular plate with clamped boundary conditions in the outer radius R. We present a comparison between the newly stress-
driven theory and a previous formulation. So doing we get that both formulations predict a reduction in transversal 
displacement with an increase in the nonlocal parameter. The reduction is more pronounced in the former theory compared to 
the refined theory. 
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1. Introduction 

The application of nanostructures and nano-systems 
has been emerging rapidly in recent years in various 
disciplines, such as mechanical, civil, electrical, and 
medical engineering. In conjunction with the increased 
applications of functionally graded materials (FGMs) in 
engineering fields, the analysis of nano FGM plates as a 
component of the structures has great significance 
(Witvrouw and Mehta, 2005). 

In the framework of analytical solution for static 
analysis, Duan and Wang (2007) present an exact 
solution for the axisymmetric bending of circular plates 
based on the Eringen nonlocal theory. They found that 
the small-scale effect enables larger deflections, 
bending moments, shear force, and lower bending 
stiffness compared to the local plate. Using Eringen’s 

nonlocal theory, Yükseler (2020) found the exact 
solution for the bending problem of circular plates 
subjected to uniformly distributed loads with a 
concentrated nonlocal force. Concerning strain gradient 
theory, from the analytical solution provided by 
(Gousias and Lazopoulos, 2015), Barretta et al. (2019) 
conclude that for simply-supported circular plates 
subjected to uniformly distributed bending couples 
along the boundary, the transverse deflection of the 
nanoplate is independent of the scale parameter. 
Utilizing the stress-driven theory, the exact solutions 
for a Timoshenko nano-beam with cantilevered, 
clamped, and simply supported boundary conditions are 
given in (Barretta et al., 2018). Considering the afore-
cited contributions, in some specific loading and 
boundary conditions, neither Eringen nor strain 
gradient theory are able to interpret the influence of 
size-dependent effects. Thus, this paper considers the 
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stress-driven theory to formulate the static and free 
vibration analysis of functionally graded annular plates. 

2. Theoretical formulations 

An annular FGM plate with an inner radius a, outer 
radius b, and thickness h, as shown in Fig. 1 is 
considered in this study. 

 
Figure 1: The annular plate 

An annular FGM plate with an inner radius a, outer 
radius b, and thickness h, as shown in Fig. 1 is 
considered in this study. 

2.1. Material properties of FGM plate 

The material properties change gradually in the 
thickness direction as a function of location. 
According to a power-law distribution function, the 
volume fraction of two different materials, for 
example, ceramic (c) and metal (m), is: 

 
and the effective material property P(z) is expressed 
as: 

 
where P could be any of the FGM properties and ξ is the 
power-law index. Here, Pc and Pm are the related 
properties of the two different constituent materials, 
respectively. Fig. 2 shows changes in the volume 
fraction across the plate thickness for different 
heterogeneity parameter values ξ. 

 
Figure 2: Changes in the volume fraction for different values 
of ξ across the thickness 

2.2. Mathematical model for FGM plate 

Based on the classical bending Kirchhoff’s plate 
theory in the axisymmetric case, the displacement 
fields are: 

 
where w(r, t) is the transversal deflection. The strain-
displacement relationships in the elasticity theory are 
given as  

 
Substituting Eq. 3 in Eq. 4, the strains may be written 
as 

 

According to Hooke’s law, concerning plane stress 
assumption, stress-strain relations for a locally 
isotropic graded material variable in the thickness of 
the plate, the linear elastic FGM equations are 

 

where only Young’s modulus is variable, and 
Poisson’s ratio is assumed to be constant. This 
hypothesis is assumed since, on the one hand, there 
are results in the literature that numerically show the 
limitate influence of Poisson’s ratio in the elastic 
response (see, e.g., (Sburlati et al., 2014)). On the other 
hand, considering variation in Poisson’s ratio leads 
to more complexity in the governing equation and in 
the search of its analytical solution. 

For the plate, the moment and resultant shear 
forces are defined as: 
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By defining curvature in the plate at a given point 

on the middle plane as 

 
and using Eqs. 6, 5 we obtain: 

 
where the flexural rigidity of the plate D⋆ is: 

 
We remark that the FGM behavior of the material is 
relevant to the calculation of this term. 

In deriving the governing differential equation of 
motion, we consider the expression of plate theory 
expressed in the form: (Reddy, 2006)  

 
we have denoted the mass moments of inertia are: 

 
where ρ(z) is the mass density of the FG material and 
p(r, t) is a transversal axisymmetric load. 

2.3. Nonlocal governing equations 

Inspired by (Romano and Barretta, 2017), we use 
the stress-driven nonlocal theory (SDT) to capture the 
size effects in the axisymmetric functionally graded 
annular plate. 

To this end, the local curvatures in a functionally 
graded annular plate are calculated. Applying the 
stress-driven integral constitutive law, the nonlocal 
elastic curvature is obtained as a convolution between 
the local elastic curvature and the bi-exponential 
kernel. 

According to stress-driven nonlocal theory, the 
elastic strain ϵ at a point r of Γ is a convolution of the 
local stress σ with an averaging kernel ϕλ 

 
where C is the local elastic compliance. 

We write Eq. 10 in terms of the local bending 
curvatures as: 

 
with reference to Eqs. 5, 9, 14, and 15, we impose 

that the nonlocal elastic curvature χel is 

an integral convolution of the local radial curvature 
and a smoothing kernel function ϕλ to formulate the 
SDT nonlocal integral model in axisymmetric 
cylindrical coordinates (Barretta et al., 2019). 

 
where ϕλ is: 

 
Here λ is a positive parameter depending on the 
characteristic length Lc, which reflects the size effect. 
In view of Eq. 17, equation 16 is a particular case of the 
general integral form: 

 
According to (Polyanin and Manzhirov, 2008) (see 

section 3.2), the integral formulation of Eq. 19 is 
reformed to a differential equation with constitutive 
boundary conditions in the following form 

 
Now the moment Mrr and Mθθ is obtained by solving 

Eqs. 20 and 152 in terms of nonlocal bending 
curvatures; then recalling the kinematic compatibility 
(i.e., χtot = −∂2w/∂r2), the results in terms of 
displacement are computed: 

 
Finally, by combining Eq. 12 and Eq. 22, the 

nonlocal stress-driven formulation of Kirchhof’s plate 
model is obtained: 

 

where  is the Laplace operator in axisymmetric polar 
coordinates. 

For the static analysis Eq. 23 is reduced to the 
equation: 

 
For the axisymmetric free vibration analysis, by 

introducing the pulses ωn, we write: 

 
so Eq. 23 becomes: 
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3. Analytical solution for the static analysis 

In this section, we study the six-order equation 24 
from an analytical point of view to obtain a closed-
form solution. Since equation 24 is non-
homogeneous, in order to determine its general 
integral, we first consider the associate homogeneous 
equation: 

 
To solve this equation, we firstly remark that, by 
defining the term 

 
one gets that Eq. 27 gives: 

 
This equation is easily integrated, and so one gets the 
following equation: 

 
This non-homogeneous fourth-order equation is 
solved in terms of special functions (Abramowitz and 
Stegun, 1964). By renaming the integration constants, 
we write the expression of the general integral of Eq. 
27 in the form: 

 
where 2F3(a1, a2; b1, b2, b3; z) and 3F4(a1, a2, a3; b1, b2, 
b3, b4; z) denote hypergeometric functions and 

 
a Meijer G-function. 

For the convenience of the reader wishing to check 
this result, we recall that the differential equation 
verified by the Meijer G-function term: 

 
is: 

 
By using this result and the generalized 

hypergeometric differential equation (Abramowitz 
and Stegun, 1964), one is able to verify that the 

general integral of Eq. 27 is Eq. 31. Now, if we consider 
the constant loading term p(r) = p, in Eq. 24 we have to 
add the term: 

 
So, the general integral of Eq. 24 is obtained. 

To uniquely get the explicit solutions, we must 
determine the six integration constants C1, . . . ,C6 from 
the specific boundary conditions. This is possible 
since, further to the standard Cauchy theory 
requirements, we have to take into account also the 
two conditions furnished by Eqs. 21. 

In such a way, we shall get, for each case, a unique 
solution by solving a not homogeneous system of six 
linear equations in six conditions. 

4. Results and Discussion 

Homogeneous materials and functionally graded 
materials in the thickness of the plate are considered. 
For FGM nanoplate, we consider constant Poisson’s 
ratio and the following power law for the Young 
modulus and density. 

 
where subscripts m and c refer to metal and ceramic 
constituents, respectively. To compare our findings 
with those of the reference, we adopted the material 
properties from Shishesaz et al. (2022). The material 
properties are given in the table 1. 

 
Table 1: Material properties (Shishesaz et al., 2022) 

For homogeneous and FGM plates, in the next 
subsections, we consider static and dynamic analyses 
for the annular nanoplate with two different boundary 
conditions (BCs) equal in inner and outer radii: simply 
supported (S-S) edges and clamped (C-C) edges. 

For the S-S nanoplate we assume: 

 
and for C-C nanoplate we assume: 

 
Further, we also have to consider the constitutive 

boundary conditions Eq. 21: 
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in terms of transversal displacement. 

The different characteristic parameter values (λ) 
allow us to evaluate the nano-scale effects given by 
the NLT. 

The numerical results are also compared with 
results obtained in the literature. 

4.1. Analytical results 

To assess the impact of characteristic parameter λ 
on the results, we set ξ = 0 - the homogeneous 
‘ceramic’ case - and change the value of λ. By 
assuming b = 1, a = b/3, h = b/10, and ν = 1/4, results are 
obtained in the following normalized form; the 
maximum transversal displacement  

,  

the transversal displacement 

, 

the resultant radial moment  

, 

and the hoop moment 

. 

The notation  denotes the maxim value of the 
previous quantities when LT is taken into account. 

4.1.1. Effects of the nonlocal parameter in different 
boundary conditions 

The following figures, the size effect is studied in a 
plate with clamped and simply supported boundary 
conditions. Figure 3 compares the normalized 
transversal displacement of the annular plate for 
ranges of λ. The pattern for clamped BC is the same as 
simply supported BC: a reduction in plate 
displacement is seen with the increase of λ, which 
means that the nonlocal model predicts stiffening 
behavior. The lowest deflection value is for λ = 1, which 
is quite a lot smaller than the value for λ = 0, 
specifically for clamped BC. 

 
Figure 3: The effect of characteristic parameter λ on the 
deflection of the clamped and simply supported annular plate 
by considering ξ = 0 

Figure 4 illustrates the variation of radial moments 
according to changes in the variable λ. The main facts 
that stand out are that for a simply supported plate, 
the radial moment is always positive, and the values 
increase with the increase of λ. In clamped BC, the 
radial moment is negative at the boundaries and 
becomes positive as we distance from the edges. As λ 
increases, the maximum positive value of radial 

moment  initially decreases but later roses. 
Also, curves associated with different values of λ 
intersect. 

 
Figure 4: The effect of characteristic parameter λ on the 
radial moment of the simply supported and clamped annular 
plate by considering ξ = 0 

Figure 5 indicates the effects of λ on the hoop 
moment values. Increasing the magnitude of λ in a 
simply supported plate reduces the hoop moment. The 
hoop moment for λ = 0 is outstripped by a narrow 
margin in comparison with the small values of λ (e.g., λ 
= 0.1). 

However, the distinctions become more pronounced 
regarding greater λ. In clamped BC, as λ increased, 

max dropped, then rose. It is also obvious that 
in both simply supported and clamped BCs, by 
increasing λ, the radial point, in which the hoop 
moment becomes zero, approaches the inner radius. 

 
Figure 5: The effect of characteristic parameter λ on the 
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hoop moment of the simply supported and clamped annular 
plate by considering ξ = 0 

5. Conclusions 

The present study investigates the static and free 
vibration analysis of an FGM annular plate. The 
governing equations are derived based on the stress-
driven nonlocal theory. The analytical solution for the 
static case is obtained in the section 3. 

Regarding simply supported annular plate, 
increasing λ results in an increase of the radial 
moment but a decrease in the hoop moment.  

Considering clamped BC, both and 

 decline then soar as λ increased. In contrary, 

the variation of  and  is vise versa. 
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