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Abstract 
This paper presents an innovative model for understanding the dynamics of information propagation within social networks. 
Incorporating cognitive biases, follower influence, and temporal decay, we propose a mathematical framework to simulate how 
information spreads through a network of individuals connected by varying degrees of trust, familiarity, and social influence 
modeled as a Neural Network. Our model accounts for the role of confirmation bias, the bandwagon effect, and fact-checking 
delays to capture real-world phenomena that affect the spread of true and false information alike. This innovative model is based 
on a hybrid approach that uses components based both on static Neural Graphs (to capture the structure of the social network) 
and on models of epidemic diffusion of information (to model the dynamics of propagation over time). To test the model we used 
LLMs and open source data to generate opinions respect to different topics in the population network based on different factors, 
such as age, gender, social status, educational level etc. The authors introduce in the network different messages (real and fake) 
trough an embedding layer in order to understand the spread of information. The proposed model is validated against state-of-
the-art approaches and aims to enhance predictive accuracy in fields such as misinformation control and viral marketing. 
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1. Introduction 

The propagation of information in social networks is a 
critical field of study due to its widespread implications 
in areas such as politics, marketing, and public health. 
In an interconnected world, understanding how 
information, whether factual or false, scatters across 
populations are crucial to mitigate the spread of 
misinformation and optimize information campaigns. 
This paper aims to propose an innovative model for 
simulating information propagation by integrating 
cognitive and social factors, including biases, trust 

levels, and the influence of followers. 

In recent years, a wide variety of models have been 
developed to study how information spreads across 
social networks, but few effectively capture the 
complexity of human decision-making and social 
interactions. Our proposed model aims to improve 
upon current methods by introducing new elements 
such as cognitive bias-driven behavior and dynamic 
updates to trust levels based on the credibility of the 
information received. 

Traditional models of information propagation, such 
as Epidemic Diffusion Models (e.g., SIR—Susceptible, 
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Infected, Recovered), have been widely used in the 
study of information the spread, however, these 
models are typically limited in their ability to account 
for the nuanced behavioral and cognitive factors that 
affect how individuals receive, interpret, and propagate 
information. Cognitive biases, such as confirmation 
bias and the bandwagon effect, play a critical role in 
shaping an individual’s likelihood of believing and 
spreading certain types of information. Additionally, 
the level of trust in the source, the delay in fact-
checking, and the influence of a user’s social network 
(e.g., followers) further complicate the dynamics of 
information flow. 

To address these challenges, we propose a novel hybrid 
model that integrates Graph Neural Networks (GNNs) 
with an extended SIR diffusion model, incorporating 
cognitive biases and social influence factors. Unlike 
traditional unidimensional models of information 
flow, our approach captures the multidimensional 
nature of information propagation, where the beliefs, 
trustworthiness, and fact-checking capabilities of 
individuals influence not only whether they propagate 
information but also how quickly they verify its 
truthfulness. Our model represents the social network 
as a directed graph, where each node corresponds to an 
individual, and edges represent the connections 
between them. Each node is characterized by a set of 
attributes, including, among others, educational level, 
cognitive biases, trustworthiness, fact-checking delay, 
and the number of followers. The interactions of these 
attributes determine whether a node propagates 
received information based on an activation function 
that is sensitive to confirmation bias, social influence, 
and the perceived truthfulness of the information. 

Furthermore, the model leverages a Dynamic Graph 
Neural Network (DGN) to account for evolving social 
connections and changing states over time. The use of 
Graph Attention Networks (GAT) enables the model to 
dynamically adjust the influence of neighboring nodes 
based on their attributes, further refining the 
propagation process. Additionally, the SIR states 
(Susceptible, Infected, Recovered) of the nodes evolve 
in response to the aggregated information received 
from neighboring nodes, which is moderated by the 
cognitive and social factors. 

2. State of the art 

The study of information propagation in social 
networks has evolved significantly over the last decade. 
Traditional models, such as the Independent Cascade 
(IC) model and the Linear Threshold (LT) model, focus 
primarily on network structure and the probabilities of 
nodes activating based on the state of their neighbors, 
often overlooking the psychological and social factors 
that influence individual decision-making. In fact, 
these models present some limitations, systematically 
underestimating the spreading speed and randomness 
of information (Ran et al., 2020), or are based on strong 
assumption, such as that the transmission of 

information is not affected by the behavior of other 
users (He et al., 2024), that hinder their ability to 
reliably represent real social diffusion dynamics. 

The integration of intelligent agents and human 
behavior models plays a pivotal role in simulating 
information spreading, particularly in complex and 
dynamic scenarios, such as urban riots or large-scale 
social events. Intelligent agents, as highlighted by 
Bruzzone et al. (2014a, 2014b), are capable of 
autonomously simulating the decision-making 
processes and interactions of individuals within these 
environments. These agents are designed to mimic 
human behavior by considering cognitive, emotional, 
and social factors, which are essential for 
understanding how information propagates through a 
population.  

The use of such agents enables a more accurate 
representation of the emergent behaviors that arise in 
crisis situations, where the rapid dissemination of 
information—whether through formal channels or 
social networks—influences public perception and 
collective actions. Furthermore, the work of Bruzzone 
et al. (2011) emphasizes the effectiveness of these 
agents in driving computer-generated forces to 
simulate human behavior in urban riots, showcasing 
their applicability in modeling large-scale social 
phenomena. By simulating human behavior through 
intelligent agents, researchers gain deeper insights 
into how information is spread in both controlled and 
chaotic settings, thereby enhancing decision support 
systems for emergency response and crowd 
management. Some recent efforts have attempted to 
integrate cognitive biases into propagation models 
(Neuhäuser et al., 2021; Ecker et al., 2022), accounting 
for how individuals' preexisting beliefs affect their 
likelihood of adopting new information. Confirmation 
bias in particular (Mao, Akyol and Hovakimyan, 2021), 
plays a pivotal role, as individuals tend to favor 
information that aligns with their existing beliefs, 
often dismissing contradictory evidence. Similarly, the 
bandwagon effect describes how the likelihood of 
adopting information increases as more individuals 
within a network embrace it. 

Other advancements have focused on the role of social 
influence (Li, Zhang, Huang, 2018), where the number 
of followers or the trustworthiness of connections 
impacts how quickly information spreads. For 
instance, models that account for trust between 
individuals provide a more nuanced view of 
information flow, as people are less likely to adopt 
information from sources they deem untrustworthy. 
Although these efforts mark significant progress, most 
models fail to incorporate all necessary elements 
(Chen, Xiao, Kumar, 2023), such as cognitive biases, 
the decay of information over time, and the dynamic 
nature of social connections. This paper seeks to 
address these gaps by integrating multiple factors into 
a unified model. 
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3. Conceptual Model 

Our model represents a social network as a directed 
graph G=(V,E), where nodes V represent individuals 
and edges E represent the connections between 
them. Each node possesses various attributes that 
influence its decision to propagate information, 
including: 

• Educational level (ei) 

• Cognitive biases (bi) 

• Trustworthiness (tri) 

• Fact-checking delay (ri) 

• Number of followers (fi ) 

• Beliefs (Bi) 

• Information truthfulness (vi) 

These attributes interact to determine the activation 
function of node i at time t, which dictates whether 
the node propagates the received information to its 
neighbors. 

Each node also represents an individual inside a 
group of people, thus it is also described by several 
parameters that characterize a person, like: 

• Age 

• Gender 

• Social Status 

• Consensus 

• Political Orientation 

• Education Level 

• Religion 

A message (information) is sent into the network 
through an embedding process. Each node generates 
through an LLM an opinion based on the different 
characteristic of the person, and the embedding layer 
compute the values of the different opinions.  Based 
on the parameters of each node that is reached by the 
information, a level of Consensus is calculated to 
determine how similar it is to the general Values and 
Beliefs of the subject, directly effecting the influence 
of the Cognitive Biases (people are more likely to 
believe and diffuse information that align with their 
personal views, especially on socio-economics and 
political themes) and the spread of the information 
from that node. In similar way it is computed the 
bandwagon effect. In the next session the authors 
describe how the information spread through the 
network and how the connections among nodes 
change.  

 
Figure 1. Network Graph and Population Consensus 

4. General Architecture 

The presented hybrid model integrates static graph 
neural networks (GNNs) with an epidemic diffusion 
model (SIR) and cognitive biases to simulate the 
propagation of information (e.g., fake news) through a 
social network. This model captures both the cognitive 
and social influences on information spread, with a 
dynamic update of node states and connections over 
time. 
 
Social Network Creation (Graph Representation) 
 

Input: A social network is represented as a graph 
G=(V,E) where:  

• V is the set of nodes, each representing an 
individual 

• E is the set of edges, representing social 
connections among individuals 

Each node i is associated with a vector of features 
that describe the behavior of the node:  

• Cognitive biases (bi): Inclination to believe 
information that aligns with personal 
convictions. 

• Trustiness (tri): The level of trust a node 
has in the information it receives. 

• Fact-checking delay (ri): The time it takes 
for a node to verify information, which is 
directly related to the educational level of 
the person 

• Personal beliefs (Bi): The pre-existing 
beliefs of the node. 

• SIR state: Each node begins in the S 
(Susceptible) state, while some nodes may 
be initialized in the I (Infected) state 
 

SIR Model Integration 
• The nodes of the network are in one of the 

following three states: 
o Susceptible (S): A node that has not 

yet received the information. 
o Infected (I): A node that has received 

the information and is propagating it. 
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o Recovered (R): A node that has 
verified the information, stopped 
propagating it, or corrected it. 

• Transitions between SIR states are influenced 
by: 

o Cognitive biases: A node with a strong 
confirmation bias or bandwagon 
effect is more likely to become 
infected when receiving information 
that aligns with its beliefs. 

o Trustiness and fact-checking: Nodes 
with high trustiness and slower fact-
checking are more likely to transition 
to the recovered state if they verify the 
information as false. 

 
Dynamic Graph Neural Network (DGN) 

• The model incorporates a Dynamic Graph 
Neural Network (DGN) to update the 
representations of nodes and their social 
connections over time. 

• Graph Attention Networks (GAT) are used to 
dynamically calculate the weight and 
influence of neighboring nodes. Each node has 
a representation hi,t, which evolves over time 
based on the information it receives and its 
own social and cognitive parameters. 

• At each time step t, the representation of each 
node is updated through an aggregation 
function that combines: 

o Information received from 
neighboring nodes. 

o Local node features (cognitive biases, 
trustiness, etc.). 
 

SIR Transitions in the Neural Network 
• Each node's SIR state evolves over time based 

on aggregated information from its neighbors. 
• Transitions between states (from Susceptible 

to Infected or from Infected to Recovered) are 
modulated by cognitive biases and 
information verification: 

o A node in the Infected state may 
transition to the Recovered state if it 
verifies that the information is false. 

o A node in the Susceptible state could 
become Infected if neighboring nodes 
propagate information that aligns 
with its cognitive biases. 

Information Propagation 
• Information propagation within the network 

is regulated by an activation function that 
determines whether a node propagates the 
received information: 

o The probability of propagation is 
influenced by confirmation bias and 
the bandwagon effect (propagating 

information because many neighbors 
do so). 

• Information is transmitted from node to node, 
and the weights of the social connections are 
dynamically updated, with the weight 
decreasing over time through a temporal 
decay factor. 
 

Network Update and Temporal Simulation 
• The simulation runs over multiple iterations. 

In each iteration: 
o The states of the nodes (S, I, R) are 

updated. 
o The weights of the connections 

between nodes are modified based on 
the accuracy and quality of the 
information transmitted. 

o Cognitive biases and social influences 
modulate the information 
propagation process. 

• At the end of the simulation, we obtain the 
overall diffusion of the information (i.e., how 
many nodes were infected and how many 
recovered). 

 
Figure 2. Dynamic Graph Neural Network General Architecture 

5. Mathematical Formulation 

Each node 𝑖 ∈ 𝑉 is associated with a feature vector xi, 
including:   

𝑥𝑖 = (𝑏𝑖 , 𝑡𝑟𝑖 , 𝑟𝑖 , 𝐵𝑖 , 𝑆𝑖 , 𝐼𝑖 , 𝑅𝑖) 

Where: 

• bi: Cognitive biases. 

• tri: Trustiness. 

• ri: Fact-checking delay. 

• Bi: Personal beliefs. 

• 𝑆𝑖 , 𝐼𝑖 , 𝑅𝑖: SIR state (Susceptible, Infected, 
Recovered). 
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The update of the state of each node i at time t is 

calculated through an aggregation function: 

ℎ𝑖,𝑡+1 = 𝜎(𝑊 ∙ ∑ 𝑎𝑖𝑗,𝑡ℎ𝑗,𝑡 + 𝑊′ ∙ ℎ𝑖,𝑡)
𝑗𝜖𝑁𝑖

 

Where: 

• N(i) is the set of neighbors of node i. 

• 𝑎𝑖𝑗,𝑡 is the attention coefficient between nodes i 
and j, which weights the influence of 
neighbors. 

• ℎ𝑖,𝑡  is the representation of node i at time t. 

• W and 𝑊′ are weight matrices learned by the 
network. 

SIR Transitions in the GNN 

The transition of state for node i at time t+1 depends 
on the aggregated state of the neighbors: 

ℎ𝑖,𝑡+1 =  𝜎(𝑊 ∙ ∑ 𝑎𝑖𝑗,𝑡ℎ𝑗,𝑡 + 𝑊′ ∙ ℎ𝑖,𝑡)
𝑗𝜖𝑁𝑖

∙ (1 − 𝛾𝑖,𝑡) + 𝑅𝑖,𝑡 ∙ 𝛾𝑖,𝑡 

 
Where: 

• 𝛾𝑖,𝑡 is the recovery rate, representing the 
probability that an infected node transitions 
to the recovered state. 

 

Activation Function for Information Propagation 

The probability that node iii propagates information I 
at time t is governed by an activation function: 
𝑓(𝐼𝑖 , 𝑡) =  𝜎(𝑤𝑖𝑗

𝑡𝑖𝑝𝑜
∙ 𝐼𝑖 ∙ 𝑡𝑟𝑖 ∙ 𝑣𝑖 − 𝜃𝑖) ∙ (1 + 𝛼 ∙ 𝑠𝑖𝑚(𝑀, 𝐵𝑖)) ∙ (1

+ 𝛽 ∙ (
𝑛𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑛𝑡𝑖

𝑛𝑡𝑜𝑡𝑎𝑙𝑖

)) ∙ 𝑒−𝜇𝑡 

Where:  
σ is the sigmoid function . 
- 𝑤𝑖𝑗 = 𝑤𝑖𝑗

𝑡𝑖𝑝𝑜 ∙ 𝑡𝑟𝑖 is the weight associated with node I 
and node j (the connection could be family, social, 
friend or acquaintance). 
- 𝐼𝑖 is the information received from node i. 
- 𝜃𝑖 is the activation threshold. 
- α e β are parameters of intensity of confirmation bias and 
bandwagon effect. 
- 𝑠𝑖𝑚(𝑀, 𝐵𝑖) is the similarity between message M and 
beliefs B_i of node i. 
- n_propagants is the number of neighbors who have 
already propagated the message. 
- n_totals is the total number of neighbors of the 
node. 
- 𝑒−𝜇𝑡 is the time decay term with parameter𝜇. 
 
Social  = 𝑤𝑖𝑗

𝑠𝑜𝑐𝑖𝑎𝑙 ∙ (1 + 𝛾 ∙ 𝑓𝑖) ,𝛾 regulates influence of 
followers 
 

The similarity between the message M and the beliefs 

Bi of the node is computed as: 

𝑠𝑖𝑚(𝑀, 𝐵𝑖) =
𝑀 ∙ 𝐵𝑖

||𝑀||||𝐵𝑖||
 

 
- M and Bi are the vectors of message and belief 
characteristics, respectively. 
- ||M|| and ||Bi|| are the carriers' rules. 
 
If a node receives false information, it increases the 
strength of the connection towards the node that gave 
the false information by reducing the weight of that 
connection in the future: 

𝑤𝑖𝑗,𝑛𝑢𝑜𝑣𝑜 = 𝑤𝑖𝑗 ∙  𝛿 
where 𝛿 is a reduction factor (0<δ<1). 

6. Results and Discussion 

The preliminary tests of our hybrid model, which 
integrates graph neural networks (GNNs) with the SIR 
diffusion model to simulate the propagation of 
information through a social network, were assessed 
using several key metrics, including the rate of 
information spread, the influence of cognitive biases, 
and the effectiveness of fact-checking in limiting the 
spread of misinformation. Furthermore, we validated 
the model through a combination of synthetic 
experiments and real-world comparison with known 
information dissemination patterns. We simulated the 
model on a synthetic social network generated using an 
Erdős–Rényi random graph. The network contains 
1,000 nodes, where each node represents an individual 
and edges represent social connections. Each node is 
initialized with attributes such as cognitive biases, 
trustworthiness, fact-checking delay, and the number 
of followers. The connections between the nodes are 
defined as either strong or weak, with different initial 
edge weights representing varying levels of social 
influence. 

The simulation was conducted over 100 epochs, where 
information is introduced into the network via a 
randomly selected seed node. This node starts in the 
infected state and propagates the information 
according to the activation function, influenced by 
confirmation bias, bandwagon effect, and temporal 
decay. We conducted multiple experiments by varying 
the parameters of the model, such as the bias 
coefficient α, social influence β, and recovery rate γ, to 
assess their impact on the overall diffusion process. 

We observed that the rate of infection increases rapidly 
during the early epochs as the information spreads 
through nodes with high cognitive biases and strong 
social connections. The confirmation bias (α) has a 
significant impact on the speed and extent of 
propagation, with higher values leading to faster and 
more widespread infection. 

As expected, nodes with lower trustworthiness and 
longer fact-checking delays remained infected for 
longer periods, contributing to sustained 
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misinformation spread. In contrast, nodes with higher 
trust and more rigorous fact-checking transitioned to 
the recovered state more quickly, helping to mitigate 
the spread of false information. The inclusion of 
temporal decay (μ) further slowed the spread of 
misinformation in later epochs, as information 
becomes outdated and loses its influence. 

The experiments demonstrate the relationship 
between the fact-checking delay (ri) and the proportion 
of nodes that transition to the recovered state. As 
expected, nodes with shorter fact-checking delays are 
more likely to verify the information and recover from 
the infected state. 

Furthermore, we observed that the overall recovery 
rate (γ) increases when nodes have a high degree of 
social trust and are part of stronger social connections. 
This indicates that fact-checking is more effective in 
trusted networks, where individuals are more likely to 
rely on the information provided by their close social 
contacts. 

7. Conclusions 

The hybrid model presented in this paper integrates 
Graph Neural Networks (GNNs) with an extended SIR 
diffusion model, offering a novel approach to 
simulating the propagation of information, including 
misinformation, within social networks. Through the 
incorporation of key social and cognitive factors such 
as confirmation bias, trustworthiness, fact-checking 
delay, and social influence, this model captures the 
multidimensional nature of how individuals process 
and spread information and fake news. The findings of 
this research provide several avenues for further 
investigation and practical applications. From a 
research perspective, the model could be extended to 
incorporate more nuanced factors such as emotional 
engagement, political orientation, or geographical 
clustering. Additionally, future studies could apply the 
model to more specific real-world datasets, allowing 
for more precise validation and refinement of the 
model’s parameters. 
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