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Abstract

This study addresses the challenges and benefits of Digital Twin (DT) applications in the aviation industry. We conducted a systematic
literature review and employed a Multi-Criteria Decision Making (MCDM) approach to identify key factors for developing a DT aligned
with the circular business model, specifically for supply chain systems, production, and operations optimization. Our analysis

synthesizes the major benefits and challenges, which were applied to a real-world case study involving aviation industry stakeholders.

The results provide valuable insights for enhancing aviation processes through DT technology.
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1. Introduction

The aircraft manufacturing industry occupies a signif-
icant position within the global economy, holding the
largest share of the manufacturing sector (Scheelhaase
etal., 2022). This sector faces complex challenges through-
out its operations, and the establishment of a resilient sup-
ply chain is crucial for mitigating disruptions and ensur-
ing continuous production. Achieving a balance between
production and operational capabilities to meet market
demands while adhering to strict safety and quality stan-
dards is an ongoing challenge (Zutin et al., 2022). It is also
important to align production processes with environmen-
tal sustainability goals to reduce emissions and improve
efficiency, investing in sustainable technologies (Jensen
et al., 2023). The industry’s ability in addressing these
challenges is not only crucial for promoting innovation,
but also for assuming responsibility for environmental
conservation (Zutin et al., 2022; Jensen et al., 2023).

With the rise of such concepts as“Industry 4.0”, the
desire for transformation has become a focus in the avia-
tion industry. With advancements in technologies like the
Internet of Things (IoT), Artificial Intelligence (AI), cloud
computing, edge computing, Big Data, and 5G, it is now
possible to manage products and business processes as
well as maintenance operations more effectively through-
out the entire life cycle of an airplane (Xiong and Wang,
2022). In this context, Digital Twins (DTs) play an im-
portant part in manufacturing, as they allow real-time
monitoring, optimization, and simulation of production
processes towards enhanced equipment performance (Gao
etal., 2022; Soori et al., 2023; Pietrangeli et al., 2023). ADT
serves as a representation of a physical system, something
that is achieved by combining data analytics, machine
learning, and multi-physics simulation. DTs have proven
to be valuable in predicting issues, improving operations,
and increasing efficiency across industries operating in
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fields crucial for green energy (Rivas Pellicer et al., 2023).
Related opportunities refer to cost reduction and more in-
formed management (Lanzini et al., 2023). In the aviation
industry, a resilient supply chain supported by DTs can
mitigate disruptions. For instance, DTs enable predictive
maintenance by continuously monitoring aircraft compo-
nents, predicting failures before they occur, and schedul-
ing maintenance proactively to minimize downtime. This
approach ensures that the supply chain remains robust,
reducing the impact of unexpected events on production
schedules. Furthermore, integrating real-time sensor
data with Computer-Aided Design (CAD) models and sim-
ulations allows manufacturers to optimize core production
processes with precise data-driven decisions (Hunde and
Woldeyohannes, 2022; Soori et al., 2023). This integration
enhances operational efficiency and cost-effectiveness,
further strengthening the aviation industry’s capability to
meet evolving market demands while maintaining high
standards of safety and sustainability.

In this research, we conduct a comprehensive analysis
of literature on DT applications to formally identify the
key factors and indicators required for developing a DT
that optimizes supply chain systems, production, and op-
erations in the aviation industry, with a special focus on
those aligned with the circular business model. We will
initialize the study by analyzing the literature to identify
the major benefits and challenges associated with build-
ing a DT of the aviation manufacturing process. After for-
malizing these factors, we aim to discern the sub-set of
critical benefits and challenges that are essential to such
an aim. This result will be achieved by means of the use of
a Multi-Criteria Decision Making (MCDM) approach. In a
subsequent section of our study, we are going to identify
the most important indicators required to build a DT of
the Aviation Manufacturing process,including all the rele-
vant stakeholders, ranging from the original equipment
manufacturer to Tier-1and Tier-2 suppliers.

The structure of this paper is outlined as follows. In
Section 2, we conduct a comprehensive literature review.
Section 3 provides a detailed account of our methodological
approach. In Section 4, we present the case study, accom-
panied by a discussion of the results and the key man-
agerial insights derived from it. Section 5 is dedicated to
discussing the conclusions, with an emphasis on potential
avenues for future research development.

2. Literature review

DTs made their initial debut in the 1970s during the Apollo
Program by the National Aeronautics and Space Adminis-
tration (NASA). Dr. Michael Grieves is credited with the
inaugural application of the DT concept in 2002. In 2010,
NASA described the essential components of DT. In 2012,
the Air Force Research Laboratory (AFRL) introduced the
concept of Airframe Digital Twin (ADT) for the design and
maintenance of airframes through an integrated system
(Xiong and Wang, 2022).

The following approach has been developed to carry out
the literature review:

- reviewing existing works on DT implementation in the
context of circular economy;

- understanding assembly for DT in the aircraft/aviation
industry, so as to gain insights from related works fo-
cused on particular systems;

- reviewing existing works on circular economy models
implementation in the aircraft/aviation industry.

Various studies have been focused on DT implementa-
tion in the context of circular economy. Preut et al. (2021)
presented the potential contributions of digital twins to
the circularity of products and the management of circular
supply chains. The authors concluded that circular supply
chains can benefit from digital twins but there is still a
need for research and development, particularly regarding
product and use case-specific implementations of the con-
cept. A Life Cycle Assessment (LCA)-based industrial opti-
mization framework was proposed by Barni et al. (2018).
In this framework, the developed DTs collected data from
the field and evaluated the sustainability performance of
both existing and planned production mixes.

The concept of DTs in the context of manufacturing
processes and their potential utility in enhancing opera-
tional efficiency and cost reduction was elucidated by Soori
et al. (2023), as it pertains to the innovative integration
of digital replicas within manufacturing processes to op-
timize efficiency and curtail operational costs. Xiong and
Wang (2022) provided an in-depth examination of DT's
within the aviation industry. Their work developed a thor-
ough historical overview of DT, insights on the intersec-
tion of DTs and the aviation sector, and a forward-looking
exploration of potential future applications. Meyer et al.
(2022) systematically outlines the diverse prerequisites
necessary for the successful implementation of DTs in the
aircraft industry. Li et al. (2021) analyzed the complexities
of digital twin technology within the aerospace commu-
nity. By doing so, the paper aims to assist in rectifying
the errors that can impede the effective implementation
of safety-critical systems, thus contributing to enhanced
safety and reliability in this domain. The application of
DT in aerospace was discussed by Wang et al. (2020). The
authors first introduced fundamental concepts pertain-
ing to DTs, discussed the significance of DT in aerospace
applications, and subsequently provided an overview of
the ongoing research landscape concerning DT technology
within China’s aerospace sector. In (Meyer et al., 2020) It
was documented that the German Aerospace Center (DLR)
initiated a project aimed at investigating methods, tech-
nologies, and processes for DTs. Within this project, three
specific use cases were described: a) the virtual product
house, b) the virtual engine, and c) the research aircraft.
The researchers directed their focus towards a range of
information technology-related concerns, including the
key project components, such as a) DT, b) digital threads,
c) application layer, and d) the common DT vision. Moenck



et al. (2023) analyzed the diverse domains where the digi-
tal twin concept finds application. Additionally, they shed
light on the integrational, organizational, and compliance-
related challenges and opportunities that pertain to air-
craft production within this context.

Shi etal. (2021) introduced the technical approach while
elaborating on the system architecture of an intelligent
assembly integration platform that relies on the digital
twin concept. This work focuses on the innovative tech-
niques and infrastructure designed to facilitate intelligent
assembly processes, utilizing the DT as a central frame-
work. Zhuang et al. (2021) stated the requirements for
dynamic data management and process traceability in
complex products such as satellites, missiles, and aircraft.
The authors introduced a comprehensive framework for
managing assembly data through DT and concurrently de-
vised the DT-based Assembly Process Management and
Control System (DT-APMCS) to empirically validate the
efficacy of this proposed framework. Ibrion et al. (2019)
called the attention to the inherent risks associated with
the implementation of DTs within the Marine Industry,
drawing valuable insights from the experiences of the Avi-
ation Industry. In their research, the authors conducted
an in-depth analysis of a case study involving the Boeing
737 MAX crashes in Indonesia and Ethiopia. They arrived
at the conclusion that while Digital Twins offer numerous
advantages, their implementation is not without a signifi-
cant degree of uncertainty and associated risk.

With a specific emphasis on targeted systems, Singh
et al. (2021) developed an Information Management (IM)
framework tailored for DTs. This framework comprises
four key IM phases: information identification, informa-
tion processing and storage, information aggregation, and
information retrieval and retention. Furthermore, the in-
formation flow across the physical, data, and model layers
was studied. The resultant framework holds the potential
to find practical applications across various stages of the
aircraft life cycle. Wu and Li (2021) introduced a dynamic
data-driven framework tailored for DT's in the context
of complex engineering products. To illustrate the prac-
ticality of this framework, a case study was conducted,
focusing on health management of an aircraft engine. The
proposed framework modeled the DT by extracting data
from an array of sensors and Industry Internet of Things
(IToT) sources. It further facilitated the real-time moni-
toring of the Remaining Useful Life (RUL) of the engine.
Additionally, the study proposed the application of a Long
Short-Term Memory (LSTM) neural network to dynami-
cally update the DT, enabling continuous evaluation of the
current RUL of the physical aircraft engine. Mandolla et al.
(2019) introduced the concept of DTs within the realm of
Additive Manufacturing (AM) Supply Chains. Their fo-
cus was on the management and security of data gener-
ated throughout the entire process of fabricating metal
aircraft components using AM technology. Also, the au-
thors highlighted the potential of integrating blockchain
technology with robust system infrastructure to drive sub-
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stantial and transformative changes across various sec-
tors, with particular relevance to the aviation industry.
In order to improve the efficiency of the aircraft assembly
process, citezhang2022digital introduced a Digital Thread-
based modeling Digital Twin (DTDT) framework, com-
prising five distinct modules. The practical application
of this framework is exemplified through a case study fo-
cused on the drilling and riveting processes within air-
craft assembly. Ren et al. (2023) introduced a Digital Twin
(DT)-enabled approach for Aircraft Final Assembly (AFAL).
They also proposed a DT-assisted framework, known as
DT-assisted Heterogeneous Processes Coordination (DT-
HPC), designed to effectively manage diverse devices and
resources. Considering that the Aircraft Final Assembly
Line (AFAL) constitutes a complex manufacturing system
where multiple installation and testing processes occur
concurrently at individual workstations, the proposed al-
gorithms have the capability to conserve energy while en-
suring the fulfillment of distinct Quality-of-Service (QoS)
requirements. A DT system, designed for the purpose of
monitoring and assessing the operational condition of re-
configurable tooling in aircraft production, was developed
by Jin et al. (2023), and subsequently validated through as-
sembly experiments. Kosova and Unver (2023) introduced
aDT-based health monitoring system, which employs ma-
chine learning techniques to facilitate the early detection
of system failures during the design phase. This research
specifically focused on hydraulic systems at the aircraft
level, covering a range of twenty failure scenarios.

The exploration of Circular Economy within the air-
craft/aviation Industry has been a relatively underexplored
area in research. However, a few selected researchers have
made significant contributions in this domain. Dias et al.
(2022) led a comprehensive investigation to identify and
analyze circular economy-related practices relevant to the
aerospace industry. The study proposed an assessment of
these practices within three global companies engaged in
the development and manufacturing of aerospace prod-
ucts. The outcome of this research effort is a valuable
guidance framework for the adoption of circular economy
practices tailored to the unique industrial requirements.
Markatos et al. (2023) performed a sensitivity analysis
on an integrated MCDM Model for sustainability assess-
ment. Their work involved the implementation of a hybrid
MCDM tool aimed at aiding the selection of sustainable ma-
terials in aviation. The robustness of this tool was tested
and validated through an extensive sensitivity analysis,
formalizing considerations on its practical applicability.

We herein conducted a thorough analysis of recent re-
search papers to examine the challenges and benefits of
DT-based applications in the aviation industry. We have
summarized the key findings in Tables 1 and 2, providing
a clear and concise overview of the main insights from the
existing literature. The application of a MCDM approach
to analyze the interdependencies between challenges and
benefits holds the potential for several positive outcomes,
representing a novel perspective in literature.
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Table 1. Challenges in DT implementation

ID Description References
C Uncertainty in creating an actual environ-  Jyeniskhan
ment or scenario: uncertainty may arise  etal. (2023)
from incomplete or inaccurate data, unex-
pected variables, or complex interactions.
Capabilities of DT may be limited given diffi-
culties to replicate the actual environment.

C, Difficulty in predicting safety levels for ~Perno et al.
performance optimization: accurate pre- (2022)
diction of safety thresholds becomes chal-
lenging while deploying DTs in safety-
critical fields like aerospace.

C; Unreliability of real-time input data: accu- Jyeniskhan
rate real-time input data is essential for DT et al. (2023)
implementation, and failing to collect reli-
able data can harm decision-making and
the analysis process of DT.

C, Challenges in implementing complex sup- Singh et al.
ply chain processes: manufacturing indus-  (2018)
tries operate in an uncertain and constantly
changing environment as per product de-
sign and processing technologies.

Cs Complexity of risk assessment require- Millwater
ments for DT implementation: risksidenti- etal. (2019)
fication, analysis and prioritization are im-
portant for management, something that
can be a complex and uncertain process.

Ce Cyber security issues: physical assets for ~ Rasheed et al.
which one can envision digital twins will ~ (2020)
require a high level of safety and security.

(o Complexity of compatible structure: DT in- Jyeniskhan
volves handling the complexity of data inte-  etal. (2023)
gration, ensuring seamless interoperability
and addressing data accuracy challenges.

Cg Precision and accuracy related challenges: Rasheed et al.
challenges associated with the resolution of ~ (2020)
sensor data and latency in communication
between a physical device and its DT.

Co Data management and processing related  Jyeniskhan
challenges: they refer tosuch issuesasdata  etal. (2023)
transfer, data storing, and data quality.

Cio  Data security related challenges: they in-  Jyeniskhan
volve data protection and data privacy. etal. (2023)

Cn Model related issues: issues such as com- Jyeniskhan
munication and combination between mod- et al. (2023)
els, as well as interoperability may arise and Sharma
while working with different models. etal. (2022)

C,  Complications in integrating systemand  Jyeniskhan
IT infrastructure: big data and complex et al. (2023)
infrastructure require high computational ~and Attaran
power, time, and speed for the DT modelto  and Celik
operate in optimal conditions. (2023)

C;3  Large-scale computation: handling mas- Rasheed
sive volumes of data, complex algorithms, et al. (2020)
and real-time processing requirements,as and VanDer-
well as integrating diverse systems while Horn  and
ensuring robust data security increase com- Mahadevan
putational complexity. (2021)

Cy  Lack of standards, frameworks, and reg-  Botin-
ulations: DTs are limited due to alack of  Sanabria

standards and recognized interoperability,
especially in the manufacturing domain.

etal. (2022)

Table 2. Benefits of DT implementation

ID Description References

B, Enhanced Predictive Maintenance: by cre- Mohsen
ating a replica of machinery and simulating and Gokhan
different failure scenarios, DT aids to pre-  (2023)
dict when maintenance is required, mini-
mizing downtime and related costs.

B, Safety enhancement: risks can be identi- Rasheed et al.
fied and reduced in various areas, including  (2020)
product availability and reputation.

B; Improved productivity and efficiency: op- Soori et al.
erations can be optimized in terms of pro-  (2023)
ductivity and waste reduction by simulating
processes for identifying bottlenecks and
inefficiencies of manufacturing systems.

B, Enhanced quality control: DT can detect Soori et al.
abnormalities via real-time tracking, low-  (2023)
ering risks of defects in finished products.

Bs Reduced production cost: DT can reduce  Soori et al.
cost by identifying opportunities for opti- (2023)
mization, as it helps to save money on ma-
terials, energy, and labor costs.

Bg Efficient supply chain: real-time analytic = Sharma et al.
and predictive alerts are addressed in sup-  (2022)
ply chains, leading to informed decision-
making and containing heavy losses.

B, Increased Cross-functional collaboration: = Mohsen
DT can collect data over time by provid- and Gokhan
ing insights into product/machine perfor- (2023)
mance and end-user experience.

Bg Increased operational efficiency: DT can  Mohsen
simulate different scenarios of a manufac- and Gokhan
turing process and enhance Operational  (2023)
Equipment Efficiency (OEE) by optimizing
downtime and performance.

By Improved product development: DT sup- Botin-
ports product development while also help-  Sanabria
ing in reducing the cost related to this stage. et al. (2022)

By  Optimized product life cycle: DT is effec- Sharma et al.
tive in improving product life cycles by real-  (2022)
time monitoring of all sub-components and
joints throughout the whole useful life.

B;  Improved decision support system: avail- Rasheed et al.
ability of quantitative data and advanced  (2020)
real-time analytics assist in making more
informed and faster decisions.

B,  Enchanced personalization of products Rasheed etal.
and services: with detailed historical re- (2020)
quirements, preferences of various stake-
holders, and evolving market trends and
competitions.

B;;  Smart production network: connected Lu et al
cyber-physical production systems will  (2020)
form a global production network that can
respond real-time to dynamic changes in
local production systems and external in-
teractions with supply chains.

B,  Improved customer satisfaction: DT can  Mohsen
assist in improving customer satisfaction = and Gokhan
by better understanding customer needs, (2023)

developing existing products, operations,
services, and helping drive new avenues for
business innovation.




By utilizing MCDM techniques, it becomes possible to
systematically weigh and prioritize various factors that
influence both challenges and benefits within a given con-
text, such as the aviation industry (DoZi¢, 2019). This
structured approach enables decision-makers to make in-
formed and data-driven choices, thereby enhancing the
efficacy of strategies and solutions. Additionally, the use of
MCDM can lead to a more comprehensive understanding
of the trade-offs involved in addressing these challenges
and realizing the associated benefits. It allows for a holistic
assessment that takes into account a multitude of factors,
ultimately aiding in the formulation of more robust and
balanced strategies that align with the broader objectives
of the aviation sector (Chai and Zhou, 2022).

Our aim is to fill in a gap in literature by proposing the
use of a suitable MCDM approach to evaluate the most sig-
nificant challenges and benefits related to DT implemen-
tation in the aviation sector within the circular economy
framework.

3. Methodological approach

We suggest the use of the Decision-Making Trial and Eval-
uation Laboratory (DEMATEL) for analyzing the interde-
pendencies within the sets of challenges and benefits in
the context of aviation formalized in Tables 1 and 2. Pri-
marily due to its unique capacity to uncover causal relation-
ships and provide a structured understanding of complex
issues, DEMATEL goes beyond traditional MCDM methods.
It allows us to identify the cause-and-effect relationships
between variables, offering insights into the root causes
of challenges and their impact on the overall system. This
attribute is particularly valuable in aviation, where sev-
eral interactions among factors can have far-reaching con-
sequences. DEMATEL’s ability to visualize and quantify
these relationships can lead to more informed and effective
decision-making compared to other techniques. DEMA-
TEL'’s distinctive advantage lies in its ability to analyze
hidden connections within the system, providing a deeper
comprehension of the challenges and benefits, which can
be instrumental in crafting well-informed and targeted
strategies for improvement. A comprehensive description
of the main methodological steps is recalled in the follow-
ing (Aiello et al., 2021).

- Data collection and transformation. Collect input data
from experts regarding the causal relationships among
n factors, compared in pairs. These relationships are
often expressed in linguistic terms. Translate the lin-
guistic variables of influence into numerical values ac-
cording to the following scale: 0 (No Influence), 1 (Very
Low Influence), 2 (Low Influence), 3 (Medium Influ-
ence), 4 (High Influence), 5 (Very High Influence). If
more than one expert is involved in the process of data
collection, a squared n x n matrix for each expert has
to be produced, all of them to be integrated into a sin-
gle squared input matrix (also called, direct-relation
matrix A) before proceeding to the next step.
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- Normalized matrix calculation. Calculate the normal-
ized matrix D = s « A, by using the value s, calculated as
follows:

s =min 1 1 (1)

n ) n
MaXy<j<n )_j=1 Qjj MAXy<jcn X j= djj

- Total relation matrix calculation. Calculate the total
relation matrix T by considering the identity matrix I
and performing the multiplication between the normal-
ized matrix D and the inverse of the difference between
matrices I and D, as follows:

T=Dx(I-D)% 2)

By means of this iteration process, matrix T will in-
corporate direct and indirect effects charactering the
dataset of interest.

- Causal relation map. Produce the causal relation map
based on the values in the total relation matrix to iden-
tify the most influential elements and discriminate
them based on their prominence and relation values.
Prominence and relation values are respectively calcu-
lated as r; + ¢; and r; — ¢;, where r; and ¢; are defined as
nx1and1x nvectors, representing the sum of rows and
sum of columns of matrix T. In the causal relation map,
factors with higher values of prominence are those fac-
tors that most significantly impact the problem under
study. Additionally, factors with positive relation val-
ues can be considered as net causers, while factors with
negative relations are considered as net receivers (Du
and Shen, 2023). The causal relation map serves as a
visual tool to analyze and illustrate the causal relation-
ships among the factors, providing a clear distinction
between the most influential and prominent elements.

4. Case Study

The present case study iterates the DEMATEL application
aiming at identifying the most prominent challenges and
benefits of DT implementation in the sector of reference,
among those presented in Tables 1 and 2. Specifically, we
led several brainstorming sessions to generate two lin-
guistic input matrices, reported in Tables 3 and 4. We
double-checked the attributed linguistic evaluations with
the support of aviation industry stakeholders, external
to the analysis and with varied professional backgrounds
(Yontar, 2023). In detail, Table 3 reports the linguistic in-
put matrix for the challenges described in Table 1, and
Table 4 reports the linguistic input matrix for the benefits
described in Table 2. The diagonal elements are invari-
ably set to NI, denoting self-comparisons. These linguistic
input matrices serve as the foundation for the DEMATEL
implementation, enabling a comprehensive understand-
ing of the interplay among the elements of the framework.
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Table 3. Linguistic input matrix for challenges

C; C, C3 C, Cs Ce C, Cg Co Cio Cn Ci2 Ci3 Cy,
C; NI H L VH L H M H L M M M VL VL
Cy M NI VL M H VH L VL L H M M L M
Cs3 H VH NI M M M NI L VL NI M VL H L
C, L M L NI L VL M L VL NI VL NI NI L
Cs H M L H NI H M L M VL M H M M
Cq L M VL H NI NI L VL H VH L VL NI VL
C; M H L M L VL NI M VH L VL H M L
Cg H VH VH L M M H VL M L H M H VL
Co H VL L M NI VH H H NI H H M VH VL
Cio L VL L M H VH L VL VL NI NI H H M
Cn L L VL H VL VL M VH H H NI H M NI
Ciz NI NI NI M H M M H M H L NI H M
Cy3 NI NI NI M M H H L M M M M NI L
Cuy M M M M H VH H M H VH H H H NI
Table 4. Linguistic input matrix for benefits
B B, B; B, Bs By B, Bg By Bio Bn B Bz By,
B; NI VH H H VL H NI H VL VL VH NI M NI
B, VH NI H L M H NI VH M H M VL H NI
Bs M M NI H VH VH H VH NI H M NI H M
B, H M H NI H M H H M M H H H VH
Bs H H VH H NI H M VH L M M H VH M
B¢ VH M VH L H NI H VH H H H H M VH
B, H VH H H L H NI M L VL H M H H
Bg M M VH H M M NI NI M L VL L H L
Bg NI H M M VH L VL VL NI M M H L H
Bio NI M L M H L NI L VL NI NI L M H
Bu H VH H H H M L H M L NI VL M H
B NI M H M VH H L VL H M NI NI L VH
B3 H H H M H VH H M M L H VL NI H
By, NI NI NI H M L VL NI M L VL H M NI
1.51 @ Top 4 Challenges c19 1.5 1 @ Top 5 Benefits
Other Challenges B7 Other Benefits
1.0 A 1.0 A
051 ¢5 A c? 0.5 B12 ol B? 9
s s ® S i
& 0.0+ cil 2 ® 0.0 Blg c
& 12 & 2 s 95
-0.5 - C13 /€10 —0.5 B1 B8 23
B10
-1.0 1 -1.0 4
ce B14
-1.51 ca —1.5
3.50 3.|75 4.b0 4.|25 4.'50 4.|75 S‘E)O 5.|25 5.50 4.5 510 5t5 510 6j5 7t0 715 310 8.5
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Figure 1. Causal relation map for challenges

Following the methodological implementation, the re-
sulting total relation matrices for challenges and benefits
are respectively reported in Table 5 and 6, along with re-
lated values of prominence and relation for each of the
analyzed elements. Visualization of results has been car-
ried out by producing various graphs for accurate analysis
of challenges and benefits. We report a description of the
produced graphs in the following.

Figure 2. Causal relation map for benefits

Causal relation map for challenges. The causal rela-
tion map for challenges reported in Figure 1, has been
obtained by mapping the prominence and relation val-
ues for challenges and by graphically displaying their
interconnections through directed arrows. Challenges
associated with a positive value of relation can be char-
acterised as net causers, while challenges associated
with a negative value of relation can be characterized
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as net receivers. By observing this graph, it is clear
that there are some highly prominent challenges, that
are C; (complexity of compatible structure), Cq (data
management and processing-related challenges), Cg
(precision and accuracy-related challenges), and Cy,
(lack of standards, framework, and regulations). These
challenges are then recognized to be the ones with the
highest importance, being strongly interrelated with

all the other challenges belonging to the input dataset.
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- Causal relation map for benefits. The causal relation
mabp for benefits reported in Figure 2, has been obtained
by mapping the prominence and relation values for ben-
efits and by graphically displaying their interconnec-
tions through directed arrows. Benefits associated with
a positive value of relation can be characterised as net
causers, while benefits associated with a negative value
of relation can be characterized as net receivers. We
can observe as there are some highly prominent ben-
efits, that are B¢ (efficient Supply chain), B (reduced
production cost), B; (improved productivity and effi-
ciency), By3 (smart production network), and B, (en-
hanced quality control). These benefits are then recog-
nized to be the ones with the highest importance.

- Prominence histogram for challenges. The promi-
nence histogram for challenges, reported in Figure 3,
depicts the frequency of the prominence level for the
analyzed challenges. It is clear from the graph that
the maximum number of challenges lies between the
prominence intervals ranged from 4.50 to 4.75. Chal-
lenges in this range are: C4 (cyber security issues), Cio
(data security related challenges), C;, (complications
in integrating system and IT infrastructure), C; (uncer-
tainty in creating an actual environment or scenario),
C, (difficulty in predicting safety levels for performance
optimization), and C5 (complexity of risk assessment
requirements for DT implementation). All these chal-
lenges should also be considered for a smooth DT im-
plementation.

- Prominence histogram for benefits. The prominence
histogram for benefits, reported in Figure 4, depicts
the frequency of the prominence level for the analyzed
benefits. It is clear from the graph that the maximum
number of benefits lies between the prominence inter-
vals ranged from 7.125 to 7.50. Benefits in this range are
the previously mentioned B; (improved productivity
and efficiency), Bs3 (smart production network), and
B, (enhanced quality control). All these benefits had
already been highlighted as strongly prominent in Fig-
ure 2. In the comparison between the prominence lev-
els of benefits and challenges, it becomes evident that
benefits hold a higher degree of significance. This ob-
servation suggests that the implementation of the DT
places greater emphasis on its advantages rather than
its challenges.

5. Conclusions and future lines

The emergence of Industry 4.0 is facilitating a profound
transformation characterized by significant technological
advancements across diverse sectors of activity. Within the
aviation industry, where paramount importance is placed
on safety and quality, the adoption of DT's poses a complex
challenge. Furthermore, integrating production processes
with sustainability objectives and embracing a circular
business model to improve efficiency further complicates
this transformative journey.
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Table 5. Total relation matrix for challenges along with related values of Prominence (r; + ¢;) and Relation (r; — ¢;)

(o C, Cs3 C, Cs Ce C; Cg Co Cio Cu Cia Ci3 Cy, r+¢G  ri—¢
C; 0117 0199 0.123 0.247 0.151 0227 0190 0.199 0167 0.189 0.171 0.185 0.145 0.108 4.596  0.242
C, 0170 0.115 0.100 0211 0.186 0.247 0171 0141  0.168 0211 0169 0187 0162 0145 4.626  0.140
Cs 0175 0199 0.069 0191 0.154  0.191 0.117 0.144  0.130 0.117 0160 0130 0.180 0.113  3.622 0519
C, 0.109 0131 0.088 0.086 0102 0106 0132 0109 0.094 0.074 0.087 0075 0.072 0088 4.217 -1512
C; 0198 0185 0126  0.241 0.118 0239 0202 0.174 0198 0.165 0.181 0214  0.191 0151  4.693  0.471
C¢  0.122 0.141 0.080 0.184 0.080 0.110 0.133 0.107 0.164  0.190 0.117 0.112 0.092 0.083 4.600 -1.169
Cy 0.172 0191 0.120 0.207 0.151 0.175 0.134 0182  0.221 0.171 0136 0.205 0.186 0.126 4.883 -0.128
Cg 0217 0241 0194 0224 0193 0242 0235 0169 0214 0199 0217  0.215 0231 0.126 5251  0.586
Cy 0197 0148 0127 0222 0120 0256 0.221 0.211 0.141 0221 0197 0197 0.230 0.112 5.028  0.174
Cp 0137 0122 0108 0192 0175 0230 0156 0.125 0.135 0.117 0.101 0.188 0.185 0137  4.603 -0.389
Cu 0146 0.148  0.100 0.217 0.127 0.163 0.186 0.214 0196 0199 0106 0.198 0.181 0.084 4.429  0.098
Cy, 0109 0109 0.080 0.198 0180 0.200 0.86 0.191 0.181 0200 0.145 0.123 0198 0.140 4.687 -0.206
C; 0096 0097 0070 0184 0148 0.200 0.190 0143 0169 0170 0150 0167 0.107 0.111 4410 -0.407
Cy 0211 0214 0166 0262 0225 0299 0254 0223 0250 0274 0228 0251 0248 0117 4861 1580
Table 6. Total relation matrix for benefits along with related values of Prominence (r; + ¢;) and Relation (r; — ;)

B: B, B;3 B, Bs B¢ B, Bg Bo Bio By B By By, L+¢G  Ii—G
B, 0.155 0.260 0260 0.238 0199 0246 0.105 0.248 0.143 0.156 0.231 0.111 0227 0160 5769 -0.293
B, 0256 0194 0283 0226 0257 0269 0116 0283 0192 0225 0212 0145 0.265 0.181 6.649 -0.445
B; 0249 0273 0240 0289 0317 0313 0.206 0310 0.161 0.245 0235 0152 0296 0.262 7404 -0.311
B, 0275 0293 0330 0238 0325 0300 0216 0306 0230 0244 0.265 0236 0313 0318 7.410  0.368
Bs 0282 0314 0355 0312 0258 0323 0203 0331 0215 0.249 0253 0236 0335 0286 7720 0.183
By 0299 0303 0359 0287 0336 0256 0220 0333 0253 0270 0273 0242 0307 0326 7704  0.423
B, 0265 0308 0311 0289 0270 0299 0134 0274 0200 0.195 0254 0203 0.294 0280 5718 1.434
Bg 0208 0.231 0283 0248 0.245 0.239 0.113 0179 0184 0182 0167 0.158 0.252 0.207 6389 -0.599
By 0149 0243 0242 0227 0278 0216 0126 0190 0129 0.197 0.192 0.196 0214 0242 5443  0.238
By 0.113 0.181 0.178 0.184 0.213 0.172 0.083 0.166 0.117 0.107  0.106 0.131 0.189 0.199 4.968 -0.689
By 0258 0301 0304 0283 0206 0274 0165 0286 0210 0208 0176 0165 0272 0271 6353  0.586
B, 0.152 0.229 0264  0.232 0.283 0.255 0.149 0.194  0.204 0202 0.146 0.131 0.219  0.265 5363 0.485
Bi; 0270 0298 0318 0278 0309 0321 0209 0281 0219 0217 0260 0174 0229 0285 7255 0.080
By, 0.099 o0.120 0.131 0.189 0.185 0.158  0.096 0.115 0.146 0.133 0.114 0.161 0.174 0.123 5349 -1.461

Our research aims to explore both the benefits and chal-
lenges associated with the integration of DTs in the avi-
ation domain by first leading a comprehensive literature
review in this field. Furthermore, a MCDM approach based
on DEMATEL methodology is proposed, yielding compre-
hensive insights that culminate in practical conclusions.

As emerged in our study, the implementation of DTs in
the aviation industry brings forth significant advantages,
including an efficient supply chain, reduced production
costs, enhanced quality control, a smart production net-
work, and improved overall productivity and efficiency.
However, this process presents notable challenges related
to such aspects as precision and accuracy, data manage-
ment and processing, lack of standards, frameworks and
regulations, and complexity of compatible structure.

Looking ahead, we aim to explore the key benefits and
challenges uncovered in this study by converting these in-
sights into practical guidelines for the effective implemen-
tation of DTs in aviation manufacturing and introducing a
multi-expert decision-making model. This model will be
designed to gather diverse viewpoints, providing a clear
framework that can be applied in real-world scenarios.
Future research directions may focus on further validat-
ing the MCDM approach based on DEMATEL methodology
across different segments of the aviation industry, such as

Maintenance, Repair, and Overhaul (MRO), and air traffic
management systems. Additionally, expanding the scope
to include the integration of emerging technologies like
artificial intelligence and blockchain in conjunction with
DTs may be interesting for understanding how to further
enhance operational efficiency and safety.

Furthermore, the proposed approach could be extended
to other sectors beyond aviation, such as automotive man-
ufacturing, healthcare, and energy production. Adapta-
tions would address sector-specific challenges and oppor-
tunities, promoting sustainability and innovation. Explor-
ing these applications would enable us to contribute to
broader discussions on digital transformation and circu-
lar economy principles in different industrial contexts. In
this way, comprehensive guidance and tools could be elabo-
rated so as to empower decision-makers when navigating
DT integration across global industries.
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