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Abstract

This study addresses the challenges and benefits of Digital Twin (DT) applications in the aviation industry. We conducted a systematicliterature review and employed a Multi-Criteria Decision Making (MCDM) approach to identify key factors for developing a DT alignedwith the circular business model, specifically for supply chain systems, production, and operations optimization. Our analysissynthesizes the major benefits and challenges, which were applied to a real-world case study involving aviation industry stakeholders.The results provide valuable insights for enhancing aviation processes through DT technology.
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1. Introduction

The aircraft manufacturing industry occupies a signif-icant position within the global economy, holding thelargest share of the manufacturing sector (Scheelhaaseet al., 2022). This sector faces complex challenges through-out its operations, and the establishment of a resilient sup-ply chain is crucial for mitigating disruptions and ensur-ing continuous production. Achieving a balance betweenproduction and operational capabilities to meet marketdemands while adhering to strict safety and quality stan-dards is an ongoing challenge (Zutin et al., 2022). It is alsoimportant to align production processes with environmen-tal sustainability goals to reduce emissions and improveefficiency, investing in sustainable technologies (Jensenet al., 2023). The industry’s ability in addressing thesechallenges is not only crucial for promoting innovation,but also for assuming responsibility for environmentalconservation (Zutin et al., 2022; Jensen et al., 2023).

With the rise of such concepts as“Industry 4.0”, thedesire for transformation has become a focus in the avia-tion industry. With advancements in technologies like theInternet of Things (IoT), Artificial Intelligence (AI), cloudcomputing, edge computing, Big Data, and 5G, it is nowpossible to manage products and business processes aswell as maintenance operations more effectively through-out the entire life cycle of an airplane (Xiong and Wang,2022). In this context, Digital Twins (DTs) play an im-portant part in manufacturing, as they allow real-timemonitoring, optimization, and simulation of productionprocesses towards enhanced equipment performance (Gaoet al., 2022; Soori et al., 2023; Pietrangeli et al., 2023). A DTserves as a representation of a physical system, somethingthat is achieved by combining data analytics, machinelearning, and multi-physics simulation. DTs have provento be valuable in predicting issues, improving operations,and increasing efficiency across industries operating in
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fields crucial for green energy (Rivas Pellicer et al., 2023).Related opportunities refer to cost reduction and more in-formed management (Lanzini et al., 2023). In the aviationindustry, a resilient supply chain supported by DTs canmitigate disruptions. For instance, DTs enable predictivemaintenance by continuously monitoring aircraft compo-nents, predicting failures before they occur, and schedul-ing maintenance proactively to minimize downtime. Thisapproach ensures that the supply chain remains robust,reducing the impact of unexpected events on productionschedules. Furthermore, integrating real-time sensordata with Computer-Aided Design (CAD) models and sim-ulations allows manufacturers to optimize core productionprocesses with precise data-driven decisions (Hunde andWoldeyohannes, 2022; Soori et al., 2023). This integrationenhances operational efficiency and cost-effectiveness,further strengthening the aviation industry’s capability tomeet evolving market demands while maintaining highstandards of safety and sustainability.
In this research, we conduct a comprehensive analysisof literature on DT applications to formally identify thekey factors and indicators required for developing a DTthat optimizes supply chain systems, production, and op-erations in the aviation industry, with a special focus onthose aligned with the circular business model. We willinitialize the study by analyzing the literature to identifythe major benefits and challenges associated with build-ing a DT of the aviation manufacturing process. After for-malizing these factors, we aim to discern the sub-set ofcritical benefits and challenges that are essential to suchan aim. This result will be achieved by means of the use ofa Multi-Criteria Decision Making (MCDM) approach. In asubsequent section of our study, we are going to identifythe most important indicators required to build a DT ofthe Aviation Manufacturing process,including all the rele-vant stakeholders, ranging from the original equipmentmanufacturer to Tier-1 and Tier-2 suppliers.
The structure of this paper is outlined as follows. InSection 2, we conduct a comprehensive literature review.Section 3 provides a detailed account of our methodologicalapproach. In Section 4, we present the case study, accom-panied by a discussion of the results and the key man-agerial insights derived from it. Section 5 is dedicated todiscussing the conclusions, with an emphasis on potentialavenues for future research development.

2. Literature review

DTs made their initial debut in the 1970s during the ApolloProgram by the National Aeronautics and Space Adminis-tration (NASA). Dr. Michael Grieves is credited with theinaugural application of the DT concept in 2002. In 2010,NASA described the essential components of DT. In 2012,the Air Force Research Laboratory (AFRL) introduced theconcept of Airframe Digital Twin (ADT) for the design andmaintenance of airframes through an integrated system(Xiong and Wang, 2022).

The following approach has been developed to carry outthe literature review:
• reviewing existing works on DT implementation in thecontext of circular economy;• understanding assembly for DT in the aircraft/aviationindustry, so as to gain insights from related works fo-cused on particular systems;• reviewing existing works on circular economy modelsimplementation in the aircraft/aviation industry.

Various studies have been focused on DT implementa-tion in the context of circular economy. Preut et al. (2021)presented the potential contributions of digital twins tothe circularity of products and the management of circularsupply chains. The authors concluded that circular supplychains can benefit from digital twins but there is still aneed for research and development, particularly regardingproduct and use case-specific implementations of the con-cept. A Life Cycle Assessment (LCA)-based industrial opti-mization framework was proposed by Barni et al. (2018).In this framework, the developed DTs collected data fromthe field and evaluated the sustainability performance ofboth existing and planned production mixes.The concept of DTs in the context of manufacturingprocesses and their potential utility in enhancing opera-tional efficiency and cost reduction was elucidated by Sooriet al. (2023), as it pertains to the innovative integrationof digital replicas within manufacturing processes to op-timize efficiency and curtail operational costs. Xiong andWang (2022) provided an in-depth examination of DTswithin the aviation industry. Their work developed a thor-ough historical overview of DTs, insights on the intersec-tion of DTs and the aviation sector, and a forward-lookingexploration of potential future applications. Meyer et al.(2022) systematically outlines the diverse prerequisitesnecessary for the successful implementation of DTs in theaircraft industry. Li et al. (2021) analyzed the complexitiesof digital twin technology within the aerospace commu-nity. By doing so, the paper aims to assist in rectifyingthe errors that can impede the effective implementationof safety-critical systems, thus contributing to enhancedsafety and reliability in this domain. The application ofDT in aerospace was discussed by Wang et al. (2020). Theauthors first introduced fundamental concepts pertain-ing to DTs, discussed the significance of DT in aerospaceapplications, and subsequently provided an overview ofthe ongoing research landscape concerning DT technologywithin China’s aerospace sector. In (Meyer et al., 2020) Itwas documented that the German Aerospace Center (DLR)initiated a project aimed at investigating methods, tech-nologies, and processes for DTs. Within this project, threespecific use cases were described: a) the virtual producthouse, b) the virtual engine, and c) the research aircraft.The researchers directed their focus towards a range ofinformation technology-related concerns, including thekey project components, such as a) DT, b) digital threads,c) application layer, and d) the common DT vision. Moenck
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et al. (2023) analyzed the diverse domains where the digi-tal twin concept finds application. Additionally, they shedlight on the integrational, organizational, and compliance-related challenges and opportunities that pertain to air-craft production within this context.
Shi et al. (2021) introduced the technical approach whileelaborating on the system architecture of an intelligentassembly integration platform that relies on the digitaltwin concept. This work focuses on the innovative tech-niques and infrastructure designed to facilitate intelligentassembly processes, utilizing the DT as a central frame-work. Zhuang et al. (2021) stated the requirements fordynamic data management and process traceability incomplex products such as satellites, missiles, and aircraft.The authors introduced a comprehensive framework formanaging assembly data through DT and concurrently de-vised the DT-based Assembly Process Management andControl System (DT-APMCS) to empirically validate theefficacy of this proposed framework. Ibrion et al. (2019)called the attention to the inherent risks associated withthe implementation of DTs within the Marine Industry,drawing valuable insights from the experiences of the Avi-ation Industry. In their research, the authors conductedan in-depth analysis of a case study involving the Boeing737 MAX crashes in Indonesia and Ethiopia. They arrivedat the conclusion that while Digital Twins offer numerousadvantages, their implementation is not without a signifi-cant degree of uncertainty and associated risk.
With a specific emphasis on targeted systems, Singhet al. (2021) developed an Information Management (IM)framework tailored for DTs. This framework comprisesfour key IM phases: information identification, informa-tion processing and storage, information aggregation, andinformation retrieval and retention. Furthermore, the in-formation flow across the physical, data, and model layerswas studied. The resultant framework holds the potentialto find practical applications across various stages of theaircraft life cycle. Wu and Li (2021) introduced a dynamicdata-driven framework tailored for DTs in the contextof complex engineering products. To illustrate the prac-ticality of this framework, a case study was conducted,focusing on health management of an aircraft engine. Theproposed framework modeled the DT by extracting datafrom an array of sensors and Industry Internet of Things(IIoT) sources. It further facilitated the real-time moni-toring of the Remaining Useful Life (RUL) of the engine.Additionally, the study proposed the application of a LongShort-Term Memory (LSTM) neural network to dynami-cally update the DT, enabling continuous evaluation of thecurrent RUL of the physical aircraft engine. Mandolla et al.(2019) introduced the concept of DTs within the realm ofAdditive Manufacturing (AM) Supply Chains. Their fo-cus was on the management and security of data gener-ated throughout the entire process of fabricating metalaircraft components using AM technology. Also, the au-thors highlighted the potential of integrating blockchaintechnology with robust system infrastructure to drive sub-

stantial and transformative changes across various sec-tors, with particular relevance to the aviation industry.In order to improve the efficiency of the aircraft assemblyprocess, citezhang2022digital introduced a Digital Thread-based modeling Digital Twin (DTDT) framework, com-prising five distinct modules. The practical applicationof this framework is exemplified through a case study fo-cused on the drilling and riveting processes within air-craft assembly. Ren et al. (2023) introduced a Digital Twin(DT)-enabled approach for Aircraft Final Assembly (AFAL).They also proposed a DT-assisted framework, known asDT-assisted Heterogeneous Processes Coordination (DT-HPC), designed to effectively manage diverse devices andresources. Considering that the Aircraft Final AssemblyLine (AFAL) constitutes a complex manufacturing systemwhere multiple installation and testing processes occurconcurrently at individual workstations, the proposed al-gorithms have the capability to conserve energy while en-suring the fulfillment of distinct Quality-of-Service (QoS)requirements. A DT system, designed for the purpose ofmonitoring and assessing the operational condition of re-configurable tooling in aircraft production, was developedby Jin et al. (2023), and subsequently validated through as-sembly experiments. Kosova and Unver (2023) introduceda DT-based health monitoring system, which employs ma-chine learning techniques to facilitate the early detectionof system failures during the design phase. This researchspecifically focused on hydraulic systems at the aircraftlevel, covering a range of twenty failure scenarios.The exploration of Circular Economy within the air-craft/aviation Industry has been a relatively underexploredarea in research. However, a few selected researchers havemade significant contributions in this domain. Dias et al.(2022) led a comprehensive investigation to identify andanalyze circular economy-related practices relevant to theaerospace industry. The study proposed an assessment ofthese practices within three global companies engaged inthe development and manufacturing of aerospace prod-ucts. The outcome of this research effort is a valuableguidance framework for the adoption of circular economypractices tailored to the unique industrial requirements.Markatos et al. (2023) performed a sensitivity analysison an integrated MCDM Model for sustainability assess-ment. Their work involved the implementation of a hybridMCDM tool aimed at aiding the selection of sustainable ma-terials in aviation. The robustness of this tool was testedand validated through an extensive sensitivity analysis,formalizing considerations on its practical applicability.We herein conducted a thorough analysis of recent re-search papers to examine the challenges and benefits ofDT-based applications in the aviation industry. We havesummarized the key findings in Tables 1 and 2, providinga clear and concise overview of the main insights from theexisting literature. The application of a MCDM approachto analyze the interdependencies between challenges andbenefits holds the potential for several positive outcomes,representing a novel perspective in literature.
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Table 1. Challenges in DT implementation

ID Description References

C1 Uncertainty in creating an actual environ-
ment or scenario: uncertainty may arisefrom incomplete or inaccurate data, unex-pected variables, or complex interactions.Capabilities of DT may be limited given diffi-culties to replicate the actual environment.

Jyeniskhanet al. (2023)

C2 Difficulty in predicting safety levels for
performance optimization: accurate pre-diction of safety thresholds becomes chal-lenging while deploying DTs in safety-critical fields like aerospace.

Perno et al.(2022)

C3 Unreliability of real-time input data: accu-rate real-time input data is essential for DTimplementation, and failing to collect reli-able data can harm decision-making andthe analysis process of DT.

Jyeniskhanet al. (2023)

C4 Challenges in implementing complex sup-
ply chain processes: manufacturing indus-tries operate in an uncertain and constantlychanging environment as per product de-sign and processing technologies.

Singh et al.(2018)

C5 Complexity of risk assessment require-
ments for DT implementation: risks identi-fication, analysis and prioritization are im-portant for management, something thatcan be a complex and uncertain process.

Millwateret al. (2019)

C6 Cyber security issues: physical assets forwhich one can envision digital twins willrequire a high level of safety and security.
Rasheed et al.(2020)

C7 Complexity of compatible structure: DT in-volves handling the complexity of data inte-gration, ensuring seamless interoperabilityand addressing data accuracy challenges.

Jyeniskhanet al. (2023)

C8 Precision and accuracy related challenges:challenges associated with the resolution ofsensor data and latency in communicationbetween a physical device and its DT.

Rasheed et al.(2020)

C9 Data management and processing related
challenges: they refer to such issues as datatransfer, data storing, and data quality.

Jyeniskhanet al. (2023)
C10 Data security related challenges: they in-volve data protection and data privacy. Jyeniskhanet al. (2023)
C11 Model related issues: issues such as com-munication and combination between mod-els, as well as interoperability may arisewhile working with different models.

Jyeniskhanet al. (2023)and Sharmaet al. (2022)
C12 Complications in integrating system and

IT infrastructure: big data and complexinfrastructure require high computationalpower, time, and speed for the DT model tooperate in optimal conditions.

Jyeniskhanet al. (2023)and Attaranand Celik(2023)
C13 Large-scale computation: handling mas-sive volumes of data, complex algorithms,and real-time processing requirements, aswell as integrating diverse systems whileensuring robust data security increase com-putational complexity.

Rasheedet al. (2020)and VanDer-Horn andMahadevan(2021)
C14 Lack of standards, frameworks, and reg-

ulations: DTs are limited due to a lack ofstandards and recognized interoperability,especially in the manufacturing domain.

Botín-Sanabriaet al. (2022)

Table 2. Benefits of DT implementation
ID Description References

B1 Enhanced Predictive Maintenance: by cre-ating a replica of machinery and simulatingdifferent failure scenarios, DT aids to pre-dict when maintenance is required, mini-mizing downtime and related costs.

Mohsenand Gokhan(2023)

B2 Safety enhancement: risks can be identi-fied and reduced in various areas, includingproduct availability and reputation.
Rasheed et al.(2020)

B3 Improved productivity and efficiency: op-erations can be optimized in terms of pro-ductivity and waste reduction by simulatingprocesses for identifying bottlenecks andinefficiencies of manufacturing systems.

Soori et al.(2023)

B4 Enhanced quality control: DT can detectabnormalities via real-time tracking, low-ering risks of defects in finished products.
Soori et al.(2023)

B5 Reduced production cost: DT can reducecost by identifying opportunities for opti-mization, as it helps to save money on ma-terials, energy, and labor costs.

Soori et al.(2023)

B6 Efficient supply chain: real-time analyticand predictive alerts are addressed in sup-ply chains, leading to informed decision-making and containing heavy losses.

Sharma et al.(2022)

B7 Increased Cross-functional collaboration:DT can collect data over time by provid-ing insights into product/machine perfor-mance and end-user experience.

Mohsenand Gokhan(2023)
B8 Increased operational efficiency: DT cansimulate different scenarios of a manufac-turing process and enhance OperationalEquipment Efficiency (OEE) by optimizingdowntime and performance.

Mohsenand Gokhan(2023)

B9 Improved product development: DT sup-ports product development while also help-ing in reducing the cost related to this stage.
Botín-Sanabriaet al. (2022)

B10 Optimized product life cycle: DT is effec-tive in improving product life cycles by real-time monitoring of all sub-components andjoints throughout the whole useful life.

Sharma et al.(2022)

B11 Improved decision support system: avail-ability of quantitative data and advancedreal-time analytics assist in making moreinformed and faster decisions.

Rasheed et al.(2020)

B12 Enchanced personalization of products
and services: with detailed historical re-quirements, preferences of various stake-holders, and evolving market trends andcompetitions.

Rasheed et al.(2020)

B13 Smart production network: connectedcyber-physical production systems willform a global production network that canrespond real-time to dynamic changes inlocal production systems and external in-teractions with supply chains.

Lu et al.(2020)

B14 Improved customer satisfaction: DT canassist in improving customer satisfactionby better understanding customer needs,developing existing products, operations,services, and helping drive new avenues forbusiness innovation.

Mohsenand Gokhan(2023)
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By utilizing MCDM techniques, it becomes possible tosystematically weigh and prioritize various factors thatinfluence both challenges and benefits within a given con-text, such as the aviation industry (Dožić, 2019). Thisstructured approach enables decision-makers to make in-formed and data-driven choices, thereby enhancing theefficacy of strategies and solutions. Additionally, the use ofMCDM can lead to a more comprehensive understandingof the trade-offs involved in addressing these challengesand realizing the associated benefits. It allows for a holisticassessment that takes into account a multitude of factors,ultimately aiding in the formulation of more robust andbalanced strategies that align with the broader objectivesof the aviation sector (Chai and Zhou, 2022).Our aim is to fill in a gap in literature by proposing theuse of a suitable MCDM approach to evaluate the most sig-nificant challenges and benefits related to DT implemen-tation in the aviation sector within the circular economyframework.
3. Methodological approach
We suggest the use of the Decision-Making Trial and Eval-uation Laboratory (DEMATEL) for analyzing the interde-pendencies within the sets of challenges and benefits inthe context of aviation formalized in Tables 1 and 2. Pri-marily due to its unique capacity to uncover causal relation-ships and provide a structured understanding of complexissues, DEMATEL goes beyond traditional MCDM methods.It allows us to identify the cause-and-effect relationshipsbetween variables, offering insights into the root causesof challenges and their impact on the overall system. Thisattribute is particularly valuable in aviation, where sev-eral interactions among factors can have far-reaching con-sequences. DEMATEL’s ability to visualize and quantifythese relationships can lead to more informed and effectivedecision-making compared to other techniques. DEMA-TEL’s distinctive advantage lies in its ability to analyzehidden connections within the system, providing a deepercomprehension of the challenges and benefits, which canbe instrumental in crafting well-informed and targetedstrategies for improvement. A comprehensive descriptionof the main methodological steps is recalled in the follow-ing (Aiello et al., 2021).
• Data collection and transformation. Collect input datafrom experts regarding the causal relationships among
n factors, compared in pairs. These relationships areoften expressed in linguistic terms. Translate the lin-guistic variables of influence into numerical values ac-cording to the following scale: 0 (No Influence), 1 (VeryLow Influence), 2 (Low Influence), 3 (Medium Influ-ence), 4 (High Influence), 5 (Very High Influence). Ifmore than one expert is involved in the process of datacollection, a squared n× nmatrix for each expert hasto be produced, all of them to be integrated into a sin-gle squared input matrix (also called, direct-relationmatrix A) before proceeding to the next step.

• Normalized matrix calculation. Calculate the normal-ized matrix D = s ∗ A, by using the value s, calculated asfollows:

s = min
[ 1
max1≤i≤n∑n

j=1 aij ,
1

max1≤j≤n∑n
i=1 aij

]
(1)

• Total relation matrix calculation. Calculate the totalrelation matrix T by considering the identity matrix Iand performing the multiplication between the normal-ized matrix D and the inverse of the difference betweenmatrices I and D, as follows:

T = D× (I – D)–1. (2)
By means of this iteration process, matrix T will in-corporate direct and indirect effects charactering thedataset of interest.• Causal relation map. Produce the causal relation mapbased on the values in the total relation matrix to iden-tify the most influential elements and discriminatethem based on their prominence and relation values.Prominence and relation values are respectively calcu-lated as ri + ci and ri – ci, where ri and ci are defined as
n×1 and 1×n vectors, representing the sum of rows andsum of columns of matrix T. In the causal relation map,factors with higher values of prominence are those fac-tors that most significantly impact the problem understudy. Additionally, factors with positive relation val-ues can be considered as net causers, while factors withnegative relations are considered as net receivers (Duand Shen, 2023). The causal relation map serves as avisual tool to analyze and illustrate the causal relation-ships among the factors, providing a clear distinctionbetween the most influential and prominent elements.

4. Case Study

The present case study iterates the DEMATEL applicationaiming at identifying the most prominent challenges andbenefits of DT implementation in the sector of reference,among those presented in Tables 1 and 2. Specifically, weled several brainstorming sessions to generate two lin-guistic input matrices, reported in Tables 3 and 4. Wedouble-checked the attributed linguistic evaluations withthe support of aviation industry stakeholders, externalto the analysis and with varied professional backgrounds(Yontar, 2023). In detail, Table 3 reports the linguistic in-put matrix for the challenges described in Table 1, andTable 4 reports the linguistic input matrix for the benefitsdescribed in Table 2. The diagonal elements are invari-ably set to NI, denoting self-comparisons. These linguisticinput matrices serve as the foundation for the DEMATELimplementation, enabling a comprehensive understand-ing of the interplay among the elements of the framework.
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Table 3. Linguistic input matrix for challenges

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
C1 NI H L VH L H M H L M M M VL VLC2 M NI VL M H VH L VL L H M M L MC3 H VH NI M M M NI L VL NI M VL H LC4 L M L NI L VL M L VL NI VL NI NI LC5 H M L H NI H M L M VL M H M MC6 L M VL H NI NI L VL H VH L VL NI VLC7 M H L M L VL NI M VH L VL H M LC8 H VH VH L M M H VL M L H M H VLC9 H VL L M NI VH H H NI H H M VH VLC10 L VL L M H VH L VL VL NI NI H H MC11 L L VL H VL VL M VH H H NI H M NIC12 NI NI NI M H M M H M H L NI H MC13 NI NI NI M M H H L M M M M NI LC14 M M M M H VH H M H VH H H H NI

Table 4. Linguistic input matrix for benefits
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

B1 NI VH H H VL H NI H VL VL VH NI M NIB2 VH NI H L M H NI VH M H M VL H NIB3 M M NI H VH VH H VH NI H M NI H MB4 H M H NI H M H H M M H H H VHB5 H H VH H NI H M VH L M M H VH MB6 VH M VH L H NI H VH H H H H M VHB7 H VH H H L H NI M L VL H M H HB8 M M VH H M M NI NI M L VL L H LB9 NI H M M VH L VL VL NI M M H L HB10 NI M L M H L NI L VL NI NI L M HB11 H VH H H H M L H M L NI VL M HB12 NI M H M VH H L VL H M NI NI L VHB13 H H H M H VH H M M L H VL NI HB14 NI NI NI H M L VL NI M L VL H M NI

Figure 1. Causal relation map for challenges

Following the methodological implementation, the re-sulting total relation matrices for challenges and benefitsare respectively reported in Table 5 and 6, along with re-lated values of prominence and relation for each of theanalyzed elements. Visualization of results has been car-ried out by producing various graphs for accurate analysisof challenges and benefits. We report a description of theproduced graphs in the following.

Figure 2. Causal relation map for benefits

• Causal relation map for challenges. The causal rela-tion map for challenges reported in Figure 1, has beenobtained by mapping the prominence and relation val-ues for challenges and by graphically displaying theirinterconnections through directed arrows. Challengesassociated with a positive value of relation can be char-acterised as net causers, while challenges associatedwith a negative value of relation can be characterized
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Figure 3. Prominence histogram for challenges

Figure 4. Prominence histogram for benefits

as net receivers. By observing this graph, it is clearthat there are some highly prominent challenges, thatare C7 (complexity of compatible structure), C9 (datamanagement and processing-related challenges), C8(precision and accuracy-related challenges), and C14(lack of standards, framework, and regulations). Thesechallenges are then recognized to be the ones with thehighest importance, being strongly interrelated withall the other challenges belonging to the input dataset.

• Causal relation map for benefits. The causal relationmap for benefits reported in Figure 2, has been obtainedby mapping the prominence and relation values for ben-efits and by graphically displaying their interconnec-tions through directed arrows. Benefits associated witha positive value of relation can be characterised as netcausers, while benefits associated with a negative valueof relation can be characterized as net receivers. Wecan observe as there are some highly prominent ben-efits, that are B6 (efficient Supply chain), B5 (reducedproduction cost), B3 (improved productivity and effi-ciency), B13 (smart production network), and B4 (en-hanced quality control). These benefits are then recog-nized to be the ones with the highest importance.• Prominence histogram for challenges. The promi-nence histogram for challenges, reported in Figure 3,depicts the frequency of the prominence level for theanalyzed challenges. It is clear from the graph thatthe maximum number of challenges lies between theprominence intervals ranged from 4.50 to 4.75. Chal-lenges in this range are: C6 (cyber security issues), C10(data security related challenges), C12 (complicationsin integrating system and IT infrastructure), C1 (uncer-tainty in creating an actual environment or scenario),C2 (difficulty in predicting safety levels for performanceoptimization), and C5 (complexity of risk assessmentrequirements for DT implementation). All these chal-lenges should also be considered for a smooth DT im-plementation.• Prominence histogram for benefits. The prominencehistogram for benefits, reported in Figure 4, depictsthe frequency of the prominence level for the analyzedbenefits. It is clear from the graph that the maximumnumber of benefits lies between the prominence inter-vals ranged from 7.125 to 7.50. Benefits in this range arethe previously mentioned B3 (improved productivityand efficiency), B13 (smart production network), andB4 (enhanced quality control). All these benefits hadalready been highlighted as strongly prominent in Fig-ure 2. In the comparison between the prominence lev-els of benefits and challenges, it becomes evident thatbenefits hold a higher degree of significance. This ob-servation suggests that the implementation of the DTplaces greater emphasis on its advantages rather thanits challenges.

5. Conclusions and future lines

The emergence of Industry 4.0 is facilitating a profoundtransformation characterized by significant technologicaladvancements across diverse sectors of activity. Within theaviation industry, where paramount importance is placedon safety and quality, the adoption of DTs poses a complexchallenge. Furthermore, integrating production processeswith sustainability objectives and embracing a circularbusiness model to improve efficiency further complicatesthis transformative journey.
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Table 5. Total relation matrix for challenges along with related values of Prominence (ri + ci) and Relation (ri – ci)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 ri + ci ri – ci
C1 0.117 0.199 0.123 0.247 0.151 0.227 0.190 0.199 0.167 0.189 0.171 0.185 0.145 0.108 4.596 0.242C2 0.170 0.115 0.100 0.211 0.186 0.247 0.171 0.141 0.168 0.211 0.169 0.187 0.162 0.145 4.626 0.140C3 0.175 0.199 0.069 0.191 0.154 0.191 0.117 0.144 0.130 0.117 0.160 0.130 0.180 0.113 3.622 0.519C4 0.109 0.131 0.088 0.086 0.102 0.106 0.132 0.109 0.094 0.074 0.087 0.075 0.072 0.088 4.217 -1.512C5 0.198 0.185 0.126 0.241 0.118 0.239 0.202 0.174 0.198 0.165 0.181 0.214 0.191 0.151 4.693 0.471C6 0.122 0.141 0.080 0.184 0.080 0.110 0.133 0.107 0.164 0.190 0.117 0.112 0.092 0.083 4.600 -1.169C7 0.172 0.191 0.120 0.207 0.151 0.175 0.134 0.182 0.221 0.171 0.136 0.205 0.186 0.126 4.883 -0.128C8 0.217 0.241 0.194 0.224 0.193 0.242 0.235 0.169 0.214 0.199 0.217 0.215 0.231 0.126 5.251 0.586C9 0.197 0.148 0.127 0.222 0.120 0.256 0.221 0.211 0.141 0.221 0.197 0.197 0.230 0.112 5.028 0.174C10 0.137 0.122 0.108 0.192 0.175 0.230 0.156 0.125 0.135 0.117 0.101 0.188 0.185 0.137 4.603 -0.389C11 0.146 0.148 0.100 0.217 0.127 0.163 0.186 0.214 0.196 0.199 0.106 0.198 0.181 0.084 4.429 0.098C12 0.109 0.109 0.080 0.198 0.180 0.200 0.186 0.191 0.181 0.200 0.145 0.123 0.198 0.140 4.687 -0.206C13 0.096 0.097 0.070 0.184 0.148 0.200 0.190 0.143 0.169 0.170 0.150 0.167 0.107 0.111 4.410 -0.407C14 0.211 0.214 0.166 0.262 0.225 0.299 0.254 0.223 0.250 0.274 0.228 0.251 0.248 0.117 4.861 1.580
Table 6. Total relation matrix for benefits along with related values of Prominence (ri + ci) and Relation (ri – ci)

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 ri + ci ri – ci
B1 0.155 0.260 0.260 0.238 0.199 0.246 0.105 0.248 0.143 0.156 0.231 0.111 0.227 0.160 5.769 -0.293B2 0.256 0.194 0.283 0.226 0.257 0.269 0.116 0.283 0.192 0.225 0.212 0.145 0.265 0.181 6.649 -0.445B3 0.249 0.273 0.240 0.289 0.317 0.313 0.206 0.310 0.161 0.245 0.235 0.152 0.296 0.262 7.404 -0.311B4 0.275 0.293 0.330 0.238 0.325 0.300 0.216 0.306 0.230 0.244 0.265 0.236 0.313 0.318 7.410 0.368B5 0.282 0.314 0.355 0.312 0.258 0.323 0.203 0.331 0.215 0.249 0.253 0.236 0.335 0.286 7.720 0.183B6 0.299 0.303 0.359 0.287 0.336 0.256 0.220 0.333 0.253 0.270 0.273 0.242 0.307 0.326 7.704 0.423B7 0.265 0.308 0.311 0.289 0.270 0.299 0.134 0.274 0.200 0.195 0.254 0.203 0.294 0.280 5.718 1.434B8 0.208 0.231 0.283 0.248 0.245 0.239 0.113 0.179 0.184 0.182 0.167 0.158 0.252 0.207 6.389 -0.599B9 0.149 0.243 0.242 0.227 0.278 0.216 0.126 0.190 0.129 0.197 0.192 0.196 0.214 0.242 5.443 0.238B10 0.113 0.181 0.178 0.184 0.213 0.172 0.083 0.166 0.117 0.107 0.106 0.131 0.189 0.199 4.968 -0.689B11 0.258 0.301 0.304 0.283 0.296 0.274 0.165 0.286 0.210 0.208 0.176 0.165 0.272 0.271 6.353 0.586B12 0.152 0.229 0.264 0.232 0.283 0.255 0.149 0.194 0.204 0.202 0.146 0.131 0.219 0.265 5.363 0.485B13 0.270 0.298 0.318 0.278 0.309 0.321 0.209 0.281 0.219 0.217 0.260 0.174 0.229 0.285 7.255 0.080B14 0.099 0.120 0.131 0.189 0.185 0.158 0.096 0.115 0.146 0.133 0.114 0.161 0.174 0.123 5.349 -1.461

Our research aims to explore both the benefits and chal-lenges associated with the integration of DTs in the avi-ation domain by first leading a comprehensive literaturereview in this field. Furthermore, a MCDM approach basedon DEMATEL methodology is proposed, yielding compre-hensive insights that culminate in practical conclusions.
As emerged in our study, the implementation of DTs inthe aviation industry brings forth significant advantages,including an efficient supply chain, reduced productioncosts, enhanced quality control, a smart production net-work, and improved overall productivity and efficiency.However, this process presents notable challenges relatedto such aspects as precision and accuracy, data manage-ment and processing, lack of standards, frameworks andregulations, and complexity of compatible structure.
Looking ahead, we aim to explore the key benefits andchallenges uncovered in this study by converting these in-sights into practical guidelines for the effective implemen-tation of DTs in aviation manufacturing and introducing amulti-expert decision-making model. This model will bedesigned to gather diverse viewpoints, providing a clearframework that can be applied in real-world scenarios.Future research directions may focus on further validat-ing the MCDM approach based on DEMATEL methodologyacross different segments of the aviation industry, such as

Maintenance, Repair, and Overhaul (MRO), and air trafficmanagement systems. Additionally, expanding the scopeto include the integration of emerging technologies likeartificial intelligence and blockchain in conjunction withDTs may be interesting for understanding how to furtherenhance operational efficiency and safety.
Furthermore, the proposed approach could be extendedto other sectors beyond aviation, such as automotive man-ufacturing, healthcare, and energy production. Adapta-tions would address sector-specific challenges and oppor-tunities, promoting sustainability and innovation. Explor-ing these applications would enable us to contribute tobroader discussions on digital transformation and circu-lar economy principles in different industrial contexts. Inthis way, comprehensive guidance and tools could be elabo-rated so as to empower decision-makers when navigatingDT integration across global industries.
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