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Abstract 

This study proposes a significant improvement in the optimization model of charging infrastructure for electric vehicles 
developed and applied to the island of Tenerife in previous work by incorporating the topographic variable through various 
approaches. An integrated approach has been developed that considers the slope from origin to destination, the average terrain 
elevation, and road curvature. This approach has identified optimal locations for charging points that minimize travel times and 
maximize energy efficiency. The innovative approach proposed herein represents a substantial contribution to the field of electric 
vehicle charging infrastructure: the methodology effectively addresses terrain topography challenges, leading to significant 
improvement in the coverage of the charging network and greater adaptability to the topographic conditions of the environment.  
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1. Introduction

The transition towards electric mobility represents a 
pivotal milestone in the pursuit of more sustainable 
and environmentally friendly transportation systems. 
The deployment of charging infrastructure for electric 
vehicles (EVs) is therefore a strategic imperative. 
However, the optimal design for the charging network 

encounters notable hurdles, particularly in light of the 
terrain's variable topography. 

The original optimization model of the charging 
network is based on traffic simulations and projections 
of EV user demand spanning a 20-year horizon, in 
addition to mobility studies conducted on the island of 
Tenerife (Rojano-Padrón et al., 2023). However, it does 
not account for the influence of topography in the 
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planning and siting of charging points. 

This aspect is especially relevant because the 
infrastructure planning models for electric vehicles 
(EVs) are based on cities or regions with minor 
variations in terrain relief (Ziemke et al., 2019). 
However, this is not the particular case in Tenerife, 
where topography plays a significant role and may 
represent an additional barrier to range anxiety, which 
already exists among potential EV users. Therefore, it is 
essential to consider the topography when planning the 
EV charging network in the selected case study. 
Moreover, the methodology can be extrapolated to 
other territories with similar characteristics. 

This study proposes substantial enhancements to 
the optimization model by addressing this limitation, 
with a primary focusing on integrating the topographic 
variable through diverse methodologies. By accounting 
for factors such as slope gradients, average terrain 
elevations, and road curvatures, the aim is to refine the 
model's accuracy and efficiency, thus aligning it more 
closely with real geographical and topographical 
conditions. 

Beyond the optimization of the spatial distribution 
of EV charging points, this research endeavors to 
contribute, comprehensively and precisely, to the 
broader advancement of charging infrastructure 
planning. Through the systematic integration of the 
topographic variable, the objective is to furnish a more 
resilient and efficacious tool for urban planning 
authorities and EV charging network operators, 
thereby facilitating the path toward enhanced 
accessibility and sustainability in electric mobility. 

2. State of art

The unplanned deployment of EV charging stations 
undoubtedly presents a number of technical and 
economic challenges in the distribution network. 
Therefore, meticulous planning of the charging 
infrastructure is imperative. In response to this 
necessity, comprehensive evaluations have been 
conducted regarding EV charging (Khalid et al. 2019, 
Khan et al. 2018). 

Recently, several methodologies have emerged for 
developing models to plan charging infrastructure. For 
instance, Quddus  et al. (2019) suggest a two-level 
stochastic encoding model to address congestion at 
charging stations amidst uncertainty in energy 
demand. Conversely, Luo et al. (2018) devised a 
dynamic planning scheme for energy management at 
charging stations under uncertain conditions. 
Furthermore, Tao et al. (2018) proposed a game-
theoretic approach to determine the pricing strategy at 
a PV-assisted charging station, considering factors 
such as minimizing battery wear, charging costs, and 
maximizing operating revenues. Within the realm of 
smart microgrids, Ahmad et al. (2017) proposed an 
energy management strategy for EVs, while 
Moghaddam et al. (2017) introduced a smart charging 

strategy utilizing metaheuristic algorithms. 

In addition to ensuring stability in power 
distribution network parameters, it is crucial to 
consider the convenience of EV drivers and the road 
network topology when determining charging station 
locations. On the one hand, Xie et al. (2018) introduced 
a mixed integer linear programming (MILP) model that 
accounts for intercity traffic in charging infrastructure 
planning. Conversely, Rogge et al. (2018) addressed 
fleet sizing and charging optimization for electric 
buses. Moreover, Yang et al. (2020) proposed an 
optimization model based on real EV driving data. 

Furthermore, Tao et al. (2018) emphasized demand 
prediction's significance in estimating necessary 
resources and rectifying potential voltage instabilities 
due to high energy demand in short time frames. This 
challenge constitutes the primary issue fast-charging 
stations face; hence, Campaña et al. (2021) developed a 
modular ultra-fast charging station (UFCS) 
architecture to overcome the inflexibility of existing 
fast-charging systems. Conversely, Leone et al. (2021) 
suggested the total installation cost of fast-charging 
stations and distribution losses as objective functions 
of an ant colony optimization model, aiming to 
minimize their impact on the distribution network and 
reduce the distance traveled by EV owners. 

Other approaches to charging network planning 
leveraged Geographic Information Systems (GIS) and 
Multi-Criteria Analysis (MCDA) to select optimal sites 
for the city of Ankara (Phonrattanasak and 
Leeprechanon, 2014). Meanwhile, Erbas et al. (2018) 
applied graph theory to model and simulate the 
Stockholm Road network structure for optimal 
charging station placement. Besides, Jia et al. (2012) 
modeled a hybrid network system of EVs and internal 
combustion vehicles, considering two levels: 
maximum flow to deploy charging stations in links 
with higher demand at the first level, and a stochastic 
equilibrium model of users with elastic demands (SUE-
ED) at the lower level. In contrast, models such as the 
one developed for the Indian city of Allahabad applied a 
hybrid algorithm based on genetic algorithms and an 
improved version of conventional particle swarm 
optimization, known as Genetic Algorithm Improved 
Particle Swarm Optimization (GAIPSO), to find optimal 
charging station locations (Gao et al., 2020). 

Recent trends indicate that models employing a 
facility-to-site approach outperform those with a 
facility-to-location approach, as the former allows 
algorithms to freely assign facilities to the solution 
space, aiming to achieve the best result based on 
parameters and objective functions, albeit at a higher 
computational cost (Awasthi et al., 2027). This 
approach considers constraints such as EV demand, 
charging capacity of each station, access constraints, 
and spatial limitations. 

Finally, it is worth noting the absence of planning 
approaches that incorporate terrain topography. This 
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highlights the potential benefits of integrating this 
discipline alongside with agent mobility and electrical 
grid limitations. Such integration could lead to the 
development of an optimized charging network that 
effectively addresses the needs of EV users while 
considering geographical challenges. 

3. Material and Methods

A series of specific methods and techniques were
employed to improve the electric vehicle charging 
network optimization model. Initially, a multi-agent 
transport simulator was used to perform traffic 
simulations, called MATSim, implemented in Java. This 
simulator can model the individual behavior of 
multiple agents, such as vehicles and users, within a 
transportation network environment, in which they 
compete with each other for shared resources such as 
time and network capacity. It is an iterative model in 
which in each iteration, agents optimize their daily 
schedules of activities, select mobility plans, and 
replan based on demand and resource availability.  

For the model preparation, a series of key input files 
called "Config" (software configuration), "Network" 
(transport network infrastructure) and "Population" 
(data from agents and their plans) were configured. 
Data preparation was based on previous mobility 
studies and the collection of geolocation, public 
transport and survey data to accurately model mobility 
patterns in the region under study. 

Detailed topographic data of the study region, 
including terrain elevation and road gradients, were 
also collected. These data were integrated into a 
geospatial model to accurately represent the local 
topography. 

Additionally, the transportation demand models 
were adjusted to reflect the expected adoption of EVs in 
the region over a specific time horizon. These adjusted 
demand models combined existing and projected 
charging point location data to generate an initial 
charging point network. 

The methodology employed in this study aimed to 
improve the optimization model of the EV charging 
infrastructure by integrating the topographic variable 
through three distinct approaches: the average slope 
between origin and destination points, the 
accumulated vertical distance, and the road curvature. 
These three approaches, combined with the collection 
of geographical data, including elevation profiles, road 
network data, and projections of EV user demand for 
the island of Tenerife, have allowed for an 
enhancement of the model through different 
approaches.  

3.1. Average Slope and Accumulated Vertical 
Distance 

This approach entails calculating the average slope 
between each road segment's initial and final points. 
The average slope (𝑆𝑚) is defined as the ratio between 
the difference in altitude (𝛥ℎ) and the horizontal 
distance (𝑑ℎ) between the initial and final points of the 
road. Mathematically, the average slope is expressed as 

𝑆𝑚 =
𝛥ℎ

𝑑ℎ
(1) 

where: 

• 𝑆𝑚 is the average slope between each road
segment's initial and final point.

• 𝛥ℎ represents the difference in altitude between
the final and initial points.

• 𝑑ℎ  is the horizontal distance between the two
points, which is calculated using the 𝑥 and 𝑦
coordinates of the initial and final points using the
Euclidean distance formula:

𝑑ℎ = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 (2) 

Therefore, the average slope (𝑆𝑚) shall be calculated 
according to 

𝑆𝑚 =
ℎ2 − ℎ1

√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2
(3) 

Once the average slope (𝑆𝑚) for each road segment was 
obtained, it was normalized to obtain a value (β) 
between -1 and +1. This normalized value was used to 
determine if adjustments were needed in the original 
charging point map. For this purpose, each charging 
point is associated with several routes, and the 
normalized factor between -1 and +1 was calculated for 
each point based on the average slope (𝑆𝑚) of all the 
routes related to that point. 

If the normalized value β is 0, no modifications are 
made to the charging point. If the value β is between -1 
and 0, it is considered that the number of chargers 
associated with that point or their power should be 
reduced. On the other hand, if the value β is between 0 
and 1, it is considered that the number of chargers or 
their power should be increased. 

This approach provides a valuable tool for 
dynamically adjusting the EV charging infrastructure 
based on the terrain's topographic characteristics and 
their impact on efficiency and accessibility. 
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3.2. Road Curvature 

This approach uses road curvature as an indirect 
indicator of the terrain's topography. Road curvature 
(κ) is calculated using the second derivative of the road 
function concerning the distance along the road. 
Mathematically, the formula to compute the curvature 
is expressed as 

𝜅(𝑥) =
𝑑2𝑦(𝑥)

𝑑𝑥2
(4) 

where

• 𝜅(𝑥) is the road curvature
• 𝑦(𝑥) is the road function, representing the terrain

elevation as a function of the distance along the
road.

• x is the distance along the road.

Road curvature provides information about the 
amount of curvature or directional change in the road. 
Regions with pronounced curvature may indicate uphill 
or downhill sections of roads, which can significantly 
affect the energy consumption of EVs. Vehicles 
traveling uphill on roads with pronounced curves will 
consume more energy than those traveling downhill. 

By considering road curvature in the optimization 
model of charging infrastructure for EVs, we can 
identify areas where the terrain's topography presents 
specific challenges in terms of energy consumption. 
This enables us to adjust the location and capacity of 
charging points to optimize EVs efficiency and 
charging experience. 

However, it is worth noting the significant challenge 
of gathering sufficient data to implement this second 
approach. This article proposes the approach and 
leaves open the possibility of developing this 
methodology to compare its results with the first 
approach. 

4. Results and Discussion

We obtained results for two different scenarios from 
simulations conducted in MATSim 
(https://matsim.org/), an open-source framework 
designed to implement large-scale agent-based 
simulations for transport optimization. The simulation 
experiments were run on a 2.1 GHz Intel Xeon Core 6230 
with 20 cores and 192 GB of RAM. Firstly, we examined 
the optimal distribution of the EV charging points 
without taking into account the topography (Figure 1). 

This approach focused solely on mobility-related 
aspects, disregarding terrain variations. 

In contrast, the second scenario incorporated the 
average slope approach into the analysis (Figure 2). 
This methodology considered the topographic 
characteristics of the terrain when locating charging 
points. Each charging point was classified into three 
different categories based on its β value, which 
represents the relationship between the charging 
demand and the average slope of the surrounding area. 

Charging points with β values between -1 and -0.5 
were depicted in red on the figure, indicating low 
charging demand in those areas. Conversely, points 
with β values between -0.5 and 0.5 were shown in blue, 
suggesting charging demand within expected 
parameters. Finally, points with β values between +0.5 
and +1 were represented in green, signaling high 
charging demand at those locations. 

Table 1 shows the total number of charging points in 
each category (low demand, medium demand, and high 
demand), based on the β value obtained and the average 
altitude value at which each charging point is located. 

Table 1. Number of points and average altitude of each category of 

recharging points 

Points 
category 

β value Number of 
points 

Average altitude 
(m) 

Low demand -1 < β < -
0.5 

757 112 

Medium 
demand 

-0.5 < β < 
0.5 

529 274 

High demand 0.5 < β < 1 227 439 

Source: results obtained from the simulation. Provided upon request to the 
authors. 

It can be observed that the average altitude of low-
demand points is 112 m, the average altitude of 
medium-demand points is 274 m. Finally, the average 
altitude of high-demand points is 439 m. There is, 
therefore, a clear correlation between altitude and the 
type of point obtained in the simulation: the higher the 
altitude, the greater the tendency for demand. 
Consequently, it would be very important to consider 
this factor when reinforcing a specific area with more 
charging points, even at the expense of other areas 
where, due to topographic reasons, the demand may be 
lower than initially expected based solely on mobility 
criteria. 

https://matsim.org/


Figure 1. Distribution of charging points (blue dots) in Tenerife obtained after simulation in MATSim without considering the effects of 
topography. 

Figure 2. Distribution of charging points in Tenerife obtained after simulation in MATSim by considering the effects of topography. The 
simulation uses the average slope approach. Red dots represent charging points with lower demand than expected; green dots represent higher 
demand than expected; and blue dots represent charging points within the expected demand.
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5. Conclusions

This study presents a significant advancement in the 
optimization model for EV charging infrastructure, 
particularly tailored to the unique topographic 
characteristics of the island of Tenerife. The 
optimization model has been substantially enhanced 
by integrating the topographic variable through 
various approaches, including slope gradients, average 
terrain elevations, and road curvatures. 

The results demonstrate a clear correlation between 
altitude and charging point demand, with higher-
altitude locations exhibiting greater demand for 
charging infrastructure. This underscores the 
importance of considering topography when planning 
the distribution of charging points, as it directly 
influences EV usage patterns and energy consumption. 

Moreover, the proposed improvements to the 
optimization model provide valuable insights for urban 
planning authorities and EV charging network 
operators. By accounting for topographic factors, the 
model offers a more accurate and efficient tool for 
designing charging infrastructure that is responsive to 
mobility needs and adaptable to the geographical 
challenges posed by terrain variability. 

Moving forward, the methodologies developed in 
this study can serve as a blueprint for enhancing EV 
charging infrastructure planning in other regions with 
similar topographic characteristics. By integrating the 
topography into optimization models, we can create 
more resilient and sustainable charging networks that 
meet the changing needs of electric mobility while also 
considering the terrain's topography. 
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