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Abstract 
As the effect of climate change increases, combined with the urban exodus, the relevance of thermal comfort becomes more and 
more evident, becoming an urgent need for all. This research presents a methodology for data collection of personal, 
microclimatic, and morphological variables relevant to the evaluation of thermal comfort in an urban environment. A dataset was 
collected and processed for a total of 200 surveys in 6 different transect walks in Seville, Spain, half of them in the historical city 
centre and the other half outside of it. Following the visualization of the data, a descriptive analysis of the main variables was 
carried out, showing the differences between the UTCI index and the real perceived thermal comfort, as well as the improvement 
associated to vegetation and spatiality. Additionally, the relevance of both air temperature and radiation on perceived thermal 
comfort was stated, showing how these two variables are intertwined regarding personal preferences. After this analysis, 3 
reliable machine learning algorithms were used to predict the expected comfort: Random Forest, XGBoost and a Multilayer 
Perceptron. This was achieved with the R language, obtaining results of 0.6 accuracy for thermal comfort prediction in all cases, 
showing therefore the complexity of the problem. 
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1. Introduction

Thermal comfort is a critical issue in today’s
changing environment (Lai et al., 2020). With the urban 
exodus phenomenon and Urban Heat Island (UHI) (Kim 
and Brown, 2021) becoming increasingly relevant step 
by step not only for the use of outdoor urban areas, but 
even for survival purposes, the consideration of urban 
resilience is mandatory for the future of the cities. The 
increase in temperature, both globally (Lindsey and 
Dahlman, 2020) and in urban areas as a consequence of 
the UHI (Kim and Brown, 2021) has transformed from 
an inconvenience to a real and dire hazard to life, 

especially considering children and elders (Cleland et 
al., 2023). 

In recent years, for the analysis of this phenomenon, 
many studies have been carried out to gather useful 
data in a variety of ways, from climate walks with the 
occasional collaboration of citizens (Peng et al., 2022) 
to fast measurements with bikes or other transports 
(Young et al., 2022). This approach can prove to be 
difficult, as specialized equipment is required as well as 
many collaborators if the objective is to gather an 
appropriate amount of data. However,  notice that this 
action is essential, as there is a generalized research 
gap on this topic. 
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1.1. Thermal comfort 

One of the main objectives when talking about 
thermal comfort nowadays -and since the origins of 
the area- is to accurately assess the perceived thermal 
comfort associated with a certain set of conditions, 
which are usually related to the microclimatic 
situation, the personal perception, or the influence of 
the urban environment, especially when speaking 
about the outdoor environment. As one could expect, 
this aim is challenging, on the one hand, due to the vast 
number of variables involved in the phenomenon, and 
on the other due to the lack of available and reliable 
data. Even if advanced machine learning models are 
suitable for this task, such as the Random Forest (Ho, 
1995) and the XGBoost (Chen and Guestrin, 2016), and 
could work relatively well in problems of this nature, 
this particular situation proves to be especially 
demanding and complex for these models. 

1.2. Research issues and aim 

With the following research, innovative results for 
climate walks are presented, firstly presenting a 
methodology for collecting data while, at the same 
time, involving the citizens. With the gathered data a 
descriptive analysis is presented for the different 
transects, as well as for the relationship between some 
of the usually avoided variables. Subsequently, the 
application of three different machine learning models 
for the prediction of thermal comfort follows, trying to 
develop a fast tool for the assessment of this perceived 
variable in different outdoor conditions, taking into 
account not only microclimatic variables but also 
variables related to both the particular person and the 
urban morphology, expanding the set of input variables 
over similar works as (Chaudhuri et al., 2018; Farhan et 
al., 2015). With this, it would be possible to know the 
effect certain variables have over the perceived 
outdoors comfort.  

The research is structured in different sections. After 
discussing the state of the art in Section 2, in Section 3, 
the methodology used for data collection in the 
different selected neighbourhoods of the city of Seville 
is presented, as well as the machine learning tools 
which will be employed. Subsequently, in Section 4, an 
extended analysis of the collected data, novel variables 
and comparison with the UTCI outdoor comfort index 
is presented, as well as the presentation of the results 
using three different machine learning techniques, 
namely Random Forest, XGBoost, and a Multi-Layer 
Perceptron, all of them fine-tuned. This work provides 
additional information on commonly overlooked 
variables, as well as the relationship between them and 
the accuracy that common and accurate machine 
learning models can provide for the prediction of 
thermal perception. 

2. State of the art

The evaluation of outdoor thermal comfort plays a
crucial role in urban planning and design, especially 
given the increasing urbanization and effects of climate 
change (Hurlimann et al., 2021; Lindsey and Dahlman, 
2020). Through technological progress and 
interdisciplinary studies, this field has undergone 
substantial development, incorporating computational 
simulations, data analysis (Lai et al., 2020), and 
creative design approaches to enhance outdoor spaces 
with a focus on human well-being. Important elements 
such as temperature, humidity, wind speed and 
sunlight are closely examined (Bröde et al., 2012) to 
understand their influence on how people perceive 
thermal conditions, leading to the establishment of 
comprehensive methodologies for assessing outdoor 
thermal comfort. 

In the current ever-changing environment, the 
focus on creating sustainable outdoor spaces has 
become crucial. Stakeholders are utilizing big data 
(Kharrazi et al., 2016), machine learning, and adaptive 
design approaches to improve thermal comfort and 
support climate resilience (Lai et al., 2020). Various 
initiatives, such as green infrastructure (Monteiro et 
al., 2020) and Climate adaptive architecture, are being 
implemented to combat the effect of urban heat islands 
(Kim and Brown, 2021) and develop inviting, healthy 
and pleasant outdoor areas that prioritize the welfare 
of urban populations in the face of climate change. 

2.1. Outdoor thermal comfort 

When considering outdoor comfort, people in urban 
environments (Chan and Chau, 2021) often assess 
thermal comfort through direct exposure to the 
outdoor environment, leading to a pleasant experience 
for urban dwellers (Mayer and Höppe, 1987). This 
perception is subject to seasonal variations, whether it 
is cold or warm, as well as factors such as activity levels 
and clothing choices (Matzarakis et al., 1999). In recent 
years, the development of various outdoor thermal 
indices has been seen. The evaluation of outdoor 
thermal comfort has been approached through various 
methods, including numerical simulation (Berkovic et 
al., 2012), survey-based assessments or 
measurements, and the exploration of novel models 
(Coccolo et al., 2016). These indices serve as tools to 
assess the outdoor thermal environment concerning its 
occupants. Despite the creation of new thermal comfort 
indices for both indoor and outdoor spaces, only a 
select few are currently utilized. This is due to 
considerations of complexity, comprehensiveness, and 
adaptability to diverse climatic scenarios, leading to a 
reduction in the number of outdoor comfort indices in 
practical use (Potchter et al., 2018). 

Several outdoor comfort indices are available to 
estimate user comfort, the most notable example being 
the Universal Thermal Climate Index (UTCI) (Höppe, 
1999), which emerged as the most widely used index 
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among meteorologists worldwide. After the intensive 
development of thermophysiological models by Fiala et 
al. (Bröde et al., 2012), 20 years ago the UTCI was 
presented as an equivalent temperature to that in a 
reference environment, making it easy and fast to 
assess the expected comfort under certain conditions. 
One of the main advantages of this index is that it only 
requires the measurements of four microclimatic 
variables to provide its classification of the expected 
comfort, using under the hat Fiala’s multinodal 
thermal regulation model (Fiala et al., 2012) to predict 
heat across a standard body. However, by doing this, 
some variables are summarized or ignored, such as sex, 
weight, or mood (Bröde et al., 2012), therefore losing 
information that could be decisive in predicting the 
expected comfort. 

Recent studies have introduced Metamatrix Thermal 
Comfort (Höppe, 1999) to facilitate the selection of 
comfort indices, showing UTCI as one of the most 
comprehensive indices. Furthermore, recent 
investigations (Ma et al., 2021) have incorporated 
coupling models employing comfort indices based on 
experimental values such as pavement porosity (Liu et 
al., 2022), humidity levels, etc. 

2.2. Climate walks 

The analysis of thermal comfort relies deeply on the 
availability of clean data, which for this task can be 
something uncommon. Even if one could develop tools 
for the assessment of the perceived thermal comfort in 
certain conditions, the reality is that those models —
such as Random Forest or XGBoost— require big 
datasets for the training step. Therefore, collecting 
data for different conditions and individuals is key for 
the expansion of the area. 

To address this difficulty, a new alternative has 
appeared in recent years: climate walks (Peng et al., 
2022), a way of collecting data while at the same time 
making people invested in the analysis of their 
surrounding reality. Different ways of doing this 
include counting with the help of voluntary 
organizations, collectives, or bystanders formed for 
this particular purpose. A climate walk is therefore 
considered as an organized event in which the 
participants walk a prepared route to raise awareness 
about climate change, as well as to discuss 
environmental subjects and action plans. 

2.3. Machine learning algorithms for comfort 
prediction 

Machine learning algorithms are increasingly 
popular for predicting outdoor thermal comfort (Fard 
et al., 2022), which can help design environments that 
promote human well-being. Among these algorithms, 
the Random Forest model is particularly effective due 
to its ability to handle complex datasets and non-linear 
relationships. By combining multiple decision trees, 
Random Forest can accurately capture the complex 

interactions between various environmental factors, 
such as temperature, humidity, wind speed, and solar 
radiation, to predict levels of thermal comfort. Its 
ensemble approach improves the accuracy of 
predictions, making it an ideal choice for outdoor 
comfort evaluations. In recent years, it has been 
extensively used in the context of thermal comfort, but 
mainly for the analysis of interiors, as in the work by 
(Aparicio-Ruiz et al., 2023) for offices or (Diz-Mellado 
et al., 2021)  for semi-outdoor spaces like courtyards in 
the city of Seville. 

In the same vein, XGBoost, a superior version of 
gradient boosting, exhibits outstanding results in 
predicting outdoor thermal comfort. Thanks to its 
ability to efficiently process sparse data and apply 
regularization methods, XGBoost skillfully tackles the 
complexities brought about by varied environmental 
conditions. Its collection of weak learners 
progressively improves predictions, leading to sturdy 
models that can detect delicate trends in outdoor 
thermal behaviour. Even if it has been proven to be 
precise and reliable in many situations, this particular 
model has not been used for the prediction of thermal 
comfort, except for a few papers, such as (Wu et al., 
2024). Finally, the Multilayer Perceptron (MLP), a 
fundamental component of neural network structures, 
provides an additional method for precise predictions. 
The deep learning abilities of MLP allow it to 
understand intricate feature representations from 
complex environmental data, enabling a detailed 
understanding of changes in outdoor comfort. Its 
adaptability to modelling nonlinear relationships and 
to adjusting to different scenarios makes it an essential 
tool in the search for ideal outdoor thermal comfort 
solutions. Being the first and smallest neural network 
model, in the last year it has attracted researchers from 
the thermal comfort area, but again, mainly for the 
comfort in the home (Irshad et al., 2020). 

3. Materials and Methods

As the work entailed a complete analysis, the need
was not only of available and useful data, but also of 
software for its exploitation. Therefore, the 
preparation of an adequate setting for the investigation 
was mandatory, making clear the origin and size of the 
data and how to be used afterwards. 

3.1. Transect walks 

A transect walk is a systematic walk along a defined 
path (transect) across a specific city area. In this work, 
the selection of transects was determined to achieve a 
comprehensive coverage of the city’s landscape and 
morphology. Geographical distribution played a key 
role, as the study had to be within the city limits, being 
a good sample of the city's behaviour. Moreover, the 
decision to include transects with varying population 
densities was made so that a broad spectrum of 
perspectives could be captured. By incorporating 
densely populated areas alongside neighborhoods with 
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potentially different demographic profiles, the survey 
was ensured to accurately reflect the city’s diverse 
populace. As a result, this provides not only a wide 
snapshot of the city dynamics, but also a variety of data 
for the following analysis, which returns a higher 
accuracy in terms of thermal comfort prediction. 

Furthermore, the choice of paths included both core 
and peripheral regions of the city to enable a 
comparative study of views and experiences, as 
follows: 

• C1, Santa Cruz: Embracing the traditional
Andalusian style, Santa Cruz features narrow,
urban canyons with traditional materials such as
ceramic bricks in the pavements.

• C2, El Arenal: This historical neighbourhood, with
winding, narrow streets, presents small hubs for
local activity and events, as well as compact parks.

• C3, Alameda de Hércules: Situated in the heart of
Seville, this route flows from Plaza Nueva up to
Resolana Street, changing from narrow streets to
the open square that is the Alameda de Hércules,
filled with people at all hours.

• E1, Juan XXIII: Providing modern living spaces
within Seville’s urban landscape, Juan XXIII
features apartments with clean lines, ample
windows, and communal green areas.

• E2, El Carmen: Neighborhood with medium and
high-rise buildings, with variable road sections
including squares and urban parks.

• E3, Huerta del Carmen: This residential
neighborhood, situated in the bounds of the city,
was built in the 1950s, and is filled with small
squares with scattered vegetation.

By including transects such as C1, C2, and C3, which 
traverse central locales, alongside transects like E1, E2, 
and E3, representing non-central, residential 
neighbourhoods, the objective was to discern potential 
disparities between the city centre and its outskirts. 
This tactical method improves the way the survey data 
delivers a thorough understanding of the city’s 
dynamics, providing viewpoints on urban living across 
various geographic and socio-economic settings. In 
Table 1, the exact number of surveys carried out in all 
six neighbourhoods is displayed, together with their 
corresponding codes. 

Table 1. Surveys per route and codification of the route. 23/09 and 

21/10 of 2023 for C-routes and E-routes, respectively. 

Route Neighbourhood Centre? Number of surveys 
C1 Santa Cruz ✓ 39 
C2 El Arenal ✓ 44 
C3 Alameda de Hércules ✓ 21 
E1 Juan XXIII ╳ 26 
E2 El Carmen ╳ 17 
E3 Huerta del Carmen ╳ 51 

3.2. Climate walks 

The way the data collection step was realized was 
through climate walks in collaboration with the 
Climathon event (Climathon, 2024), the participants 
being the actors of these surveys, asking people on 
their respective transect questions about thermal 
comfort. 

With the implication of bystanders as well as the 
participants of the abovementioned event both the 
reach of the research and its diffusion were expanded. 
At the same time, the discussion about their reality and 
the effect some variables could have on the perceived 
comfort proved to be useful for the task of choosing the 
most relevant variables for their analysis.  

3.3. Surveys 

The process of collecting data and preparing them 
for the following steps was complex in itself, as there is 
no standard form of outdoor thermal comfort, and the 
number of variables typically considered in this subject 
ranges from a couple of dozen to up to 70 (Lai et al., 
2020). In this particular case, the focus was not only on 
measuring personal data regarding perception but also 
on the morphological and microclimatic components 
of the phenomenon and its impact on personal 
perception. 

To address this challenge, a standardized survey has 
been developed, based on previous work such as 
(Nikolopoulou and Lykoudis, 2006), so that this 
information can be easily obtained with the aid of 
Google Forms. To include a wider range of data, two 
different dates were chosen, one month apart, during 
the Autumn of Seville, making measurements in both 
the historical centre, whose thermal resilience has been 
extensively studied (Sánchez Ramos et al., 2022; Diz-
Mellado et al., 2023), and in other neighbourhoods, 
aiming at providing a complex snapshot of 
morphologically different areas. 

Each form was divided into three distinct sections, 
one for personal information and perception, one for 
the particular microclimatic situation of the 
environment, and one for the morphological 
characteristics of the rounding area. Notice that the 
second and third items were common for all surveys 
obtained in a particular stop, as it is assumed that the 
microclimatic conditions do not change under such 
small spatio-temporal variations. With the merging of 
the different sections, a form for a particular set of 
conditions for a certain person is generated, with more 
than 60 variables available in total. 

The study areas were chosen trying to obtain the 
representation of both the historical inner part of the 
city and of that of their surroundings, working with a 
total of six transects, three for the historical centre, and 
another three for other neighbourhoods. On each 
transect, between five and seven stops were selected for 
the measurements and the execution of the surveys, 
trying to capture morphologically different areas. 



3.4. Software for data processing 

Within the area of urban planning and environmental 
evaluation, it is vital to precisely forecast thermal 
comfort to ensure the well-being and satisfaction of 
inhabitants. Machine learning methods offer a 
promising way to improve this prediction process, 
handling large amounts of data, and helping to find 
patterns that might not be obvious otherwise. By using 
machine learning, it is possible to create models that 
adapt to different situations, making outdoor 
environments more comfortable and sustainable for 
everyone. 

3.4.1. Random Forest 

A Random Forest, presented originally in (Ho, 1995), 
is an ensemble learning method that builds several 
decision trees during training, with each tree trained on 
random subsets of features and data to reduce 
overfitting. This randomness improves the robustness 
and precision of the model. In the prediction phase, 
every tree makes an independent class prediction, with 
the ultimate prediction being decided by either a 
majority vote (in classification) or by taking the 
average (in regression) from all the trees. The 
popularity of random forests stems from their 
simplicity, ability to scale, and proficiency in managing 
intricate high-dimensional data interactions. 

3.4.2. XGBoost 

XGBoost (Extreme Gradient Boosting) is a highly 
optimized and scalable implementation of gradient 
boosting algorithms (Chen and Guestrin, 2016). 
Sequentially, it builds a collection of first learners, 
typically decision trees, by adapting them to the 
residuals of prior iterations. It utilizes regularization 
methods to avoid overfitting and parallel processing to 
boost computational speed. Its novelty is found in the 
dual optimization of the loss function and the 
regularization component, which results in quicker 
convergence and improved model efficacy. XGBoost is 
widely used in machine learning competitions and 
real-world applications because of its high predictive 
accuracy and efficiency. 

3.4.3. Multilayer Perceptron 

A Neural Network (Haykin, 1994) is a computational 
model inspired by the human brain, consisting of 
interconnected neurons organized in layers. Through 
training with algorithms such as backpropagation, 
they learn to map input data to output predictions by 
adjusting neuron weights. They excel in learning 
intricate patterns from large datasets, offering 
flexibility and the ability to capture nonlinear 
relationships for both classification and regression 
tasks. More precisely, in this case, a Multi-Layer 
Perceptron (MLP) is deployed (Haykin, 1994), using 
different widths, i.e., the number of neurons in the only 
layer of the net. This is done classically, but using a bit 

of fine-tuning so that an appropriate value for the 
hyperparameter can be chosen. 

3.4.4. Data processing 

For the necessary cleaning and processing steps over 
the collected data, the R language was used, a 
programming language specially designed for data 
visualization (Wickham, 2016) and, recently, for the 
extensive development of machine learning and 
artificial intelligence algorithms (Kuhn and Wickham, 
2020). More precisely, to do this, the guidelines given 
by Wickham followed, tidying up the data through 
using the tidyverse framework for data reading, 
sorting, recording and, in general, cleaning. 

After preparing a “tidy” dataset, in the sense used by 
Wickham, the tidymodels framework (Kuhn and 
Wickham, 2020) was used to quickly deploy three 
different machine learning algorithms, more precisely 
a Random Forest (RF), a boosted tree via XGBoost, and 
a Multilayer Perceptron (MLP), the simplest instance of 
neural network. For a fast explanation of each of those 
models, one can check (Rigatti, 2017) for the Random 
Forest, (Chen and Guestrin, 2016) for the XGBoost, and 
(Ruck et al., 1990) for the Multilayer Perceptron. These 
particular models were chosen because their utility and 
reach have been proven one time and another for many 
different situations. In addition to their accuracy and 
adaptability to many scenarios, they were chosen due 
to their availability within the tidymodels framework. 

4. Results and Discussion

In this section, the main results of the analysis are 
exposed, ranging from the review of the surveys 
performed, to the descriptive analysis of some of the 
variables involved and their relationship with thermal 
comfort, to end with the use of the machine learning 
models and their accuracy for the assessment of the 
thermal comfort associated with certain conditions. 

4.1. Surveys sample 

A standard questionnaire was designed, and 198 
surveys were carried out in 6 different 
neighbourhoods, both in the city’s historic center and 
outside of it. The surveys were performed on the 
morning of days 23rd of September and the 21st of 
October, between 11:00 and 13:00 hours in the first case 
and 13:00 and 15:00 hours in the second. The exact 
number of surveys performed in each of the six 
neighborhoods, as well as the codification of the 
following figures, can be seen in Table 1. 
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Figure 1. Survey distribution per neighborhood.  

Due to the variability in the number of people 
throughout the transects, the number of surveys 
changes from one stop to another, as well as between 
transects. To see the distribution of surveys per stop, 
one can look at Figure 1, in which it can be seen how 
many surveys were taken in each stop, ranging from 1 
to more than 15. One can see in the figure that for most 
stops the number of surveys was around 6, becoming 3 
for noncentric transects 1 and 2. In general, however, 
almost the same number of surveys were taken in and 
outside the city historical center. Notice, however, that 
there were certain locations with a higher pedestrian 
traffic, as it is the case with the first stop at route E1, 
Plaza Nueva, a common meeting place and transit area. 
The opposite behaviour was found on other stops on 
routes E1 and E2, where there was little transit. 

Figure 2. Would like to make changes in microclimatic variables. 

One of the questions asked to the participants in the 
survey was about the microclimatic variables that they 
would like to change, from a list of the four considered 
to compute the UTCI index. In Figure 2 it is possible to 
see the total count of people who answered asking to 
change one or more microclimatic variables. One of the 
insights given by the figure is that both radiation and 
temperature are the most prominent variables in this 
aspect, which could be explained by the high 
temperature for the chosen days, even in autumn. It is 
interesting, additionally, to see how little people cared 
about the wind in this situation, being less important 
than humidity, which was already less relevant than 
temperature and radiation. 

Figure 3. Would change temperature versus would change radiation, 
including a small jitter for a better visualization. 

After the results given in Figure 2 the question arises 
on whether these two variables, radiation and 
temperature, are connected regarding personal 
perception. To quickly check this hypothesis Figure 3 
was made, plotting the air temperature (ºC) against the 
mean radiant temperature (ºC), and using colour and 
shape to represent whether people wanted to change 
temperature and/or radiation. It can be seen that the 
behaviour of the personal preferences are similar when 
changing the temperatures, pointing out that there is 
no clear relation between the perception of these 
variables. 



Figure 4. Likeable and dislikeable elements 

When asked about the morphological aspects of the 
environment, a list of possible elements was given, 
making the participants answer whether they found the 
element likeable or not. From those answers a likeable 
punctuation was developed, measuring how likeable 
were those elements across the whole campaign. To 
compute the punctuation one must simply, for each 
element, add 1 for each person that liked that element, 
and -1 if they disliked it, with neutral answers adding 0. 
This value represents in a fast manner the mean 
behaviors, as can be seen in Figure 4, in which is clear 
that both vegetation and spatiality are the main liked 
elements in the surveyed areas, while noise seems to be 
the most unlikeable. This last result is coherent with 
the fact that the number of people is also one of the 
most liked elements, being completely opposed to the 
perceived noise. 

Figure 5. Reason of visit and perceived comfort

In Figure 5 the distribution of answers for the reason 
to visit the area is presented, as well as the perceived 
thermal comfort, split by reason. This variable is not 
usually considered, and it was expected to affect the 
thermal perception, but from this plot it, can be 
understood that the thermal comfort doesn’t have such 
a dependence on the reason of the visit. However, 
future tests should be taken to properly verify this fact. 
Notice that “Passing by” and “Work”/”Leisure” are 
considered different categories, the first being for cases 
in which people were moving to a different place, no 
matter the reason; while the second was used only if the 
surveyed person was actually either working or 
spending some leisure time at the site of the survey. 

Figure 6. UTCI classification versus real thermal sensation. 
Percentages by UTCI classification. 

One of the addressed objectives was to verify the 
accuracy of the UTCI index, by measuring the perceived 
thermal comfort in the same scales. When making a 
comparison between the perceived and the expected 
comfort, as seen in Figure 6, one can see that the UTCI 
classification predicts heat stress in a great number of 
cases in which the participant was neutral or even 
slightly cold, losing the expected accuracy of this index. 

This reduced performance could potentially be 
attributed to the development of the index, as it was 
created as a global tool, with our data coming from a 
single city in Spain. If we consider Fiala’s multinodal 
model (Fiala et al., 2012), a bias can be found on the 
original data, as there is mainly representation of 
American people. That bias could have been inherited 
by multinodal model and, then, by the UTCI index, 
therefore explaining the lack of accuracy working with 
Sevillian people. 

Rodríguez-Gallego et al. | 7 
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4.2. Machine learning algorithms 

For the first two cases a bootstrap cross-validation 
estimate of the metrics was used with 25 sets prepared 
over the 198 entries of the dataset, while for the 
multilayer perceptron cross-validation was employed, 
with 80% of the full dataset in the training subset and 
the rest in the test subset. This was done due to 
limitations in the deployed code. 

Table 2. Hyperparameters for the different models. 

Model Parameter Value Description 
RF num. trees 100 Number of trees 
RF mtry 25 Number of regressors 
XGBoost mtry 27 Number of regressors 
XGBoost trees 100 Number of trees in the 

ensemble 
XGBoost tree_depth 6 Depth of the tree 
MLP hidden_units 20 Width of the net 

The value of the hyperparameters obtained through 
fine-tuning can be seen on Table 2. The results for the 
associated classification are given in Table 3 for 
different metrics, followed by an example of 
classification, as the one presented for the UTCI index, 
for the Random Forest model, in Figure 7.  

Table 3. Metrics for different models. 

Model Parameter Value 
RF Accuracy 0.59
RF Sensitivity 0.34
RF F1 score 0.47
XGBoost Accuracy 0.54
XGBoost Sensitivity 0.31
XGBoost F1 score 0.36
MLP Accuracy 0.59
MLP Sensitivity 0.2 
MLP F1 score 0.74

RF stands for Random Forest, and MLP for Multilayer Perceptron. 

Figure 7. Real classification versus predictions for the test set using 
the Random Forest model. 

From Table 3 it is possible to extract the following: 

• For all models, the accuracy is below 0.6,
indicating that the models are not performing very
well in terms of overall correctness. RF and MLP
have the highest accuracy at 0.59, while XGBoost
has a slightly lower accuracy at 0.537.

•  Regarding sensitivity or true positive rate, the
number of positive cases that were correctly
identified by the model, it can be said that RF has
the highest sensitivity at 0.34, followed by
XGBoost at 0.31 and MLP at 0.2. This suggests that
RF is better at correctly identifying positive cases
compared to the other models.

• As a summary of the previous metrics, the F1 score
can be used, being the harmonic mean of both and
being appropriate for cases in which the class
distribution is not completely balanced. MLP has
the highest F1 score at 0.74, followed by RF at 0.47
and XGBoost at 0.36. This indicates that MLP has
the best balance between precision and recall
among the three models.

Overall, based on these results, it can be said that RF 
and MLP perform similarly in terms of accuracy, but 
MLP outperforms RF in terms of the F1 score. XGBoost 
has the lowest performance in all metrics among the 
three models. MLP has the highest F1 score, suggesting 
it might be the best choice if a balance between 
precision and sensitivity is desired. Notice, however, 
that these results are lower than expected for datasets 
of this size, especially in terms of accuracy. This could 
be related to errors in the dataset, as well as the 
personal noise associated to the preferences of the 
participants. 

5. Conclusions

As exposed, the analysis of outdoor thermal comfort
can be truly challenging, as it is a complex 
phenomenon composed of many intertwined 
processes. To address this task with machine learning 
tools an adequate amount of data is essential, a difficult 
requirement in this area due to the general lack of 
available and reliable datasets. This is mainly 
attributed to both the need for special equipment and 
the large number of variables involved in this situation, 
some of them subjective and difficult to process 
correctly. 

With these challenges in mind, a standardized 
survey was developed, and 198 surveys were conducted 
in 6 different neighbourhoods, both in the city’s 
historic centre and out of it, measuring more than 60 
variables in total for each  answer, made up of variables 
related to personal, microclimatic, and morphological 
factors. Surveys were carried out as part of a climate 
walk, therefore involving the citizens of Seville in the 
analysis of their surroundings and providing 
information on the relevant variables. 



Analysis of the variables by themselves provided 
information about the expected behaviours of people in 
this environment and relating them to perceived 
thermal comfort gave additional information on the 
main issues people find regarding this subject. One of 
the most prominent results was the real differences 
between the predicted thermal comfort, given by the 
UTCI index, and the real thermal comfort experienced, 
a discrepancy that needs further analysis. Additionally, 
it was observed, in a descriptive way, that vegetation 
and spatiality were the most liked aspects of the 
environment, compared to noise, the most disliked. It 
was also noted that, under the studied conditions, both 
air temperature and radiation are perceived as variables 
to change, even if the relationship between the two 
regarding perception is still unclear. 

After the descriptive analysis, and addressing the 
main objective of the investigation, machine learning 
techniques were used to develop a tool for the 
evaluation of outside thermal comfort given a 
particular set of conditions. After data preparation, 
three different well-known and reliable data-driven 
models were used: Random Forest, XGBoost, and a 
Multilayer Perceptron. In all cases, the accuracy of the 
models ranged from 0.54 to 0.59, below the results for 
similar classification tasks, which shows the 
complexity of the studied phenomenon and the need 
for additional analysis. Even if the accuracy values were 
between acceptable ranges for this task, the obtained 
sensitivity was much lower, with a maximum value of 
0.34, which points out how the trained models tend to 
predict positives, i.e., comfort over discomfort.  

As further work expands the one presented here, it 
would be useful to try other techniques to detect and 
assess the importance of the different variables, 
making it easier to collect data and, therefore, 
increasing the total size of the dataset. With an 
expanded dataset, the results given by these machine 
learning algorithms should improve, as they are based 
heavily on the quality and quantity of data. 
Additionally, applying the methodology for data 
collection to different thermal environments, such as 
Summer or during a heat wave would improve their 
prediction capabilities. Finally, expanding the research 
to other areas, in and outside of Seville, would further 
improve the representation of the results and the reach 
of the chosen models. 
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